Skip to main content
Genetics logoLink to Genetics
. 1999 Sep;153(1):427–444. doi: 10.1093/genetics/153.1.427

Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants.

P D Rabinowicz 1, E L Braun 1, A D Wolfe 1, B Bowen 1, E Grotewold 1
PMCID: PMC1460732  PMID: 10471724

Abstract

Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residue-long sequence spanning the region between the conserved DNA-recognition helices (Myb(BRH)) of R2R3 Myb domains. We determined that maize expresses >80 different R2R3 Myb genes, and evolutionary distances among maize Myb(BRH) sequences indicate that most of the amplification of the R2R3 Myb gene family occurred after the origin of land plants but prior to the separation of monocots and dicots. In addition, evidence is provided for the very recent duplication of particular classes of R2R3 Myb genes in the grasses. Together, these findings render a novel line of evidence for the amplification of the R2R3 Myb gene family in the early history of land plants and suggest that maize provides a possible model system to examine the hypothesis that the expansion of Myb genes is associated with the regulation of novel plant cellular functions.

Full Text

The Full Text of this article is available as a PDF (348.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avila J., Nieto C., Cañas L., Benito M. J., Paz-Ares J. Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. Plant J. 1993 Apr;3(4):553–562. doi: 10.1046/j.1365-313x.1993.03040553.x. [DOI] [PubMed] [Google Scholar]
  2. Bateman A., Birney E., Durbin R., Eddy S. R., Finn R. D., Sonnhammer E. L. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 1999 Jan 1;27(1):260–262. doi: 10.1093/nar/27.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender J., Fink G. R. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5655–5660. doi: 10.1073/pnas.95.10.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun E. L., Kang S., Nelson M. A., Natvig D. O. Identification of the first fungal annexin: analysis of annexin gene duplications and implications for eukaryotic evolution. J Mol Evol. 1998 Nov;47(5):531–543. doi: 10.1007/pl00006409. [DOI] [PubMed] [Google Scholar]
  5. Byrne P. F., McMullen M. D., Snook M. E., Musket T. A., Theuri J. M., Widstrom N. W., Wiseman B. R., Coe E. H. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8820–8825. doi: 10.1073/pnas.93.17.8820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chopra S., Athma P., Li X. G., Peterson T. A maize Myb homolog is encoded by a multicopy gene complex. Mol Gen Genet. 1998 Nov;260(4):372–380. doi: 10.1007/s004380050906. [DOI] [PubMed] [Google Scholar]
  7. Chopra S., Athma P., Peterson T. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. Plant Cell. 1996 Jul;8(7):1149–1158. doi: 10.1105/tpc.8.7.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cone K. C., Cocciolone S. M., Burr F. A., Burr B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell. 1993 Dec;5(12):1795–1805. doi: 10.1105/tpc.5.12.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doebley J., Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell. 1998 Jul;10(7):1075–1082. doi: 10.1105/tpc.10.7.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feng D. F., Cho G., Doolittle R. F. Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13028–13033. doi: 10.1073/pnas.94.24.13028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gabrielsen O. S., Sentenac A., Fromageot P. Specific DNA binding by c-Myb: evidence for a double helix-turn-helix-related motif. Science. 1991 Sep 6;253(5024):1140–1143. doi: 10.1126/science.1887237. [DOI] [PubMed] [Google Scholar]
  12. Gaut B. S., Morton B. R., McCaig B. C., Clegg M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274–10279. doi: 10.1073/pnas.93.19.10274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grotewold E., Athma P., Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4587–4591. doi: 10.1073/pnas.88.11.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grotewold E., Chamberlin M., Snook M., Siame B., Butler L., Swenson J., Maddock S., St Clair G., Bowen B. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell. 1998 May;10(5):721–740. [PMC free article] [PubMed] [Google Scholar]
  15. Grotewold E., Drummond B. J., Bowen B., Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994 Feb 11;76(3):543–553. doi: 10.1016/0092-8674(94)90117-1. [DOI] [PubMed] [Google Scholar]
  16. Gubler F., Kalla R., Roberts J. K., Jacobsen J. V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995 Nov;7(11):1879–1891. doi: 10.1105/tpc.7.11.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hegvold A. B., Gabrielsen O. S. The importance of the linker connecting the repeats of the c-Myb oncoprotein may be due to a positioning function. Nucleic Acids Res. 1996 Oct 15;24(20):3990–3995. doi: 10.1093/nar/24.20.3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  19. Kanei-Ishii C., Sarai A., Sawazaki T., Nakagoshi H., He D. N., Ogata K., Nishimura Y., Ishii S. The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product. J Biol Chem. 1990 Nov 15;265(32):19990–19995. [PubMed] [Google Scholar]
  20. Kimball R. T., Braun E. L., Ligon J. D. Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and evolutionary enigma. Proc Biol Sci. 1997 Oct 22;264(1387):1517–1523. doi: 10.1098/rspb.1997.0210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kranz H. D., Denekamp M., Greco R., Jin H., Leyva A., Meissner R. C., Petroni K., Urzainqui A., Bevan M., Martin C. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 1998 Oct;16(2):263–276. doi: 10.1046/j.1365-313x.1998.00278.x. [DOI] [PubMed] [Google Scholar]
  22. Leech M. J., Kammerer W., Cove D. J., Martin C., Wang T. L. Expression of myb-related genes in the moss, Physcomitrella patens. Plant J. 1993 Jan;3(1):51–61. doi: 10.1046/j.1365-313x.1993.t01-3-00999.x. [DOI] [PubMed] [Google Scholar]
  23. Lipsick J. S. One billion years of Myb. Oncogene. 1996 Jul 18;13(2):223–235. [PubMed] [Google Scholar]
  24. Loguerico L. L., Zhang J. Q., Wilkins T. A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet. 1999 Jun;261(4-5):660–671. doi: 10.1007/s004380050009. [DOI] [PubMed] [Google Scholar]
  25. Marocco A., Wissenbach M., Becker D., Paz-Ares J., Saedler H., Salamini F., Rohde W. Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA binding domain of the myb oncoproteins. Mol Gen Genet. 1989 Apr;216(2-3):183–187. doi: 10.1007/BF00334354. [DOI] [PubMed] [Google Scholar]
  26. Martin C., Paz-Ares J. MYB transcription factors in plants. Trends Genet. 1997 Feb;13(2):67–73. doi: 10.1016/s0168-9525(96)10049-4. [DOI] [PubMed] [Google Scholar]
  27. Morris S. C. Metazoan phylogenies: falling into place or falling to pieces? A palaeontological perspective. Curr Opin Genet Dev. 1998 Dec;8(6):662–667. doi: 10.1016/s0959-437x(98)80034-8. [DOI] [PubMed] [Google Scholar]
  28. Moyano E., Martínez-Garcia J. F., Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell. 1996 Sep;8(9):1519–1532. doi: 10.1105/tpc.8.9.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Murray E. E., Lotzer J., Eberle M. Codon usage in plant genes. Nucleic Acids Res. 1989 Jan 25;17(2):477–498. doi: 10.1093/nar/17.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Muse S. V. Estimating synonymous and nonsynonymous substitution rates. Mol Biol Evol. 1996 Jan;13(1):105–114. doi: 10.1093/oxfordjournals.molbev.a025549. [DOI] [PubMed] [Google Scholar]
  31. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  32. Noda K., Glover B. J., Linstead P., Martin C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature. 1994 Jun 23;369(6482):661–664. doi: 10.1038/369661a0. [DOI] [PubMed] [Google Scholar]
  33. Ogata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H., Sarai A., Ishii S., Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell. 1994 Nov 18;79(4):639–648. doi: 10.1016/0092-8674(94)90549-5. [DOI] [PubMed] [Google Scholar]
  34. Oppenheimer D. G., Herman P. L., Sivakumaran S., Esch J., Marks M. D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 1991 Nov 1;67(3):483–493. doi: 10.1016/0092-8674(91)90523-2. [DOI] [PubMed] [Google Scholar]
  35. Paz-Ares J., Ghosal D., Wienand U., Peterson P. A., Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987 Dec 1;6(12):3553–3558. doi: 10.1002/j.1460-2075.1987.tb02684.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Romero I., Fuertes A., Benito M. J., Malpica J. M., Leyva A., Paz-Ares J. More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J. 1998 May;14(3):273–284. doi: 10.1046/j.1365-313x.1998.00113.x. [DOI] [PubMed] [Google Scholar]
  37. Rosinski J. A., Atchley W. R. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol. 1998 Jan;46(1):74–83. doi: 10.1007/pl00006285. [DOI] [PubMed] [Google Scholar]
  38. Sablowski R. W., Moyano E., Culianez-Macia F. A., Schuch W., Martin C., Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 1994 Jan 1;13(1):128–137. doi: 10.1002/j.1460-2075.1994.tb06242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saikumar P., Murali R., Reddy E. P. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8452–8456. doi: 10.1073/pnas.87.21.8452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takezaki N., Rzhetsky A., Nei M. Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol. 1995 Sep;12(5):823–833. doi: 10.1093/oxfordjournals.molbev.a040259. [DOI] [PubMed] [Google Scholar]
  41. Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993 Nov;5(11):1529–1539. doi: 10.1105/tpc.5.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Waites R., Selvadurai H. R., Oliver I. R., Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 1998 May 29;93(5):779–789. doi: 10.1016/s0092-8674(00)81439-7. [DOI] [PubMed] [Google Scholar]
  43. Williams C. E., Grotewold E. Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities. J Biol Chem. 1997 Jan 3;272(1):563–571. doi: 10.1074/jbc.272.1.563. [DOI] [PubMed] [Google Scholar]
  44. Wolfe A. D., dePamphilis C. W. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol. 1998 Oct;15(10):1243–1258. doi: 10.1093/oxfordjournals.molbev.a025853. [DOI] [PubMed] [Google Scholar]
  45. Yang Y., Klessig D. F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14972–14977. doi: 10.1073/pnas.93.25.14972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep;39(3):306–314. doi: 10.1007/BF00160154. [DOI] [PubMed] [Google Scholar]
  47. van Aalten D. M., Grotewold E., Joshua-Tor L. Essential dynamics from NMR clusters: dynamic properties of the Myb DNA-binding domain and a hinge-bending enhancing variant. Methods. 1998 Mar;14(3):318–328. doi: 10.1006/meth.1998.0587. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES