Skip to main content
Genetics logoLink to Genetics
. 1999 Nov;153(3):1423–1434. doi: 10.1093/genetics/153.3.1423

DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus.

D A Filatov 1, D Charlesworth 1
PMCID: PMC1460830  PMID: 10545470

Abstract

A study of DNA polymorphism and divergence was conducted for the cytosolic phosphoglucose isomerase (PGI:E.C.5.3.1.9) gene of five species of the mustard genus Leavenworthia: Leavenworthia stylosa, L. alabamica, L. crassa, L. uniflora, and L. torulosa. Sequences of an internal 2.3-kb PgiC gene region spanning exons 6-16 were obtained from 14 L. stylosa plants from two natural populations and from one to several plants for each of the other species. The level of nucleotide polymorphism in L. stylosa PgiC gene was quite high (pi = 0.051, theta = 0.052). Although recombination is estimated to be high in this locus, extensive haplotype structure was observed for the entire 2.3-kb region. The L. stylosa sequences fall into at least two groups, distinguished by the presence of several indels and nucleotide substitutions, and one of the three charge change nucleotide replacements within the region sequenced correlates with the haplotypes. The differences between the haplotypes are older than between the species, and the haplotypes are still segregating in at least two of five species studied. There is no evidence of recent or ancient population subdivision that could maintain distinct haplotypes. The age of the haplotypes and the results of Kelly's Z(nS) and Wall's B and Q tests with recombination suggest that the haplotypes are maintained due to balancing selection at or near this locus.

Full Text

The Full Text of this article is available as a PDF (139.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth D., Liu F. L., Zhang L. The evolution of the alcohol dehydrogenase gene family by loss of introns in plants of the genus Leavenworthia (Brassicaceae). Mol Biol Evol. 1998 May;15(5):552–559. doi: 10.1093/oxfordjournals.molbev.a025955. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth D., Yang Z. Allozyme diversity in Leavenworthia populations with different inbreeding levels. Heredity (Edinb) 1998 Oct;81(Pt 4):453–461. doi: 10.1046/j.1365-2540.1998.00415.x. [DOI] [PubMed] [Google Scholar]
  4. Cummings M. P., Clegg M. T. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5637–5642. doi: 10.1073/pnas.95.10.5637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaut B. S., Clegg M. T. Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5095–5099. doi: 10.1073/pnas.90.11.5095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gaut B. S., Clegg M. T. Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). Genetics. 1993 Dec;135(4):1091–1097. doi: 10.1093/genetics/135.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hasson E., Wang I. N., Zeng L. W., Kreitman M., Eanes W. F. Nucleotide variation in the triosephosphate isomerase (Tpi) locus of Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1998 Jun;15(6):756–769. doi: 10.1093/oxfordjournals.molbev.a025979. [DOI] [PubMed] [Google Scholar]
  10. Hedrick P. W. Hitchhiking: a comparison of linkage and partial selfing. Genetics. 1980 Mar;94(3):791–808. doi: 10.1093/genetics/94.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henry A. M., Damerval C. High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize. Mol Gen Genet. 1997 Sep;256(2):147–157. doi: 10.1007/s004380050556. [DOI] [PubMed] [Google Scholar]
  12. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
  15. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  16. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson R. R., Kaplan N. L. The coalescent process in models with selection and recombination. Genetics. 1988 Nov;120(3):831–840. doi: 10.1093/genetics/120.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hudson R. R. Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983 Apr;23(2):183–201. doi: 10.1016/0040-5809(83)90013-8. [DOI] [PubMed] [Google Scholar]
  20. Kaplan N. L., Darden T., Hudson R. R. The coalescent process in models with selection. Genetics. 1988 Nov;120(3):819–829. doi: 10.1093/genetics/120.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz L. A., Harrison R. G. Balancing selection on electrophoretic variation of phosphoglucose isomerase in two species of field cricket: Gryllus veletis and G. offnsylvanicus. Genetics. 1997 Oct;147(2):609–621. doi: 10.1093/genetics/147.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kirby D. A., Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. doi: 10.1093/genetics/141.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klein J., Gutknecht J., Fischer N. The major histocompatibility complex and human evolution. Trends Genet. 1990 Jan;6(1):7–11. doi: 10.1016/0168-9525(90)90042-5. [DOI] [PubMed] [Google Scholar]
  25. Kondrashov A. S. Measuring spontaneous deleterious mutation process. Genetica. 1998;102-103(1-6):183–197. [PubMed] [Google Scholar]
  26. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu F., Zhang L., Charlesworth D. Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc Biol Sci. 1998 Feb 22;265(1393):293–301. doi: 10.1098/rspb.1998.0295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  29. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  30. Richman A. D., Uyenoyama M. K., Kohn J. R. Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science. 1996 Aug 30;273(5279):1212–1216. doi: 10.1126/science.273.5279.1212. [DOI] [PubMed] [Google Scholar]
  31. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  32. Shattuck-Eidens D. M., Bell R. N., Neuhausen S. L., Helentjaris T. DNA sequence variation within maize and melon: observations from polymerase chain reaction amplification and direct sequencing. Genetics. 1990 Sep;126(1):207–217. doi: 10.1093/genetics/126.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strobeck C. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics. 1983 Mar;103(3):545–555. doi: 10.1093/genetics/103.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Terauchi R., Terachi T., Miyashita N. T. DNA polymorphism at the Pgi locus of a wild yam, Dioscorea tokoro. Genetics. 1997 Dec;147(4):1899–1914. doi: 10.1093/genetics/147.4.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watt W. B. Eggs, enzymes, and evolution: natural genetic variants change insect fecundity. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10608–10612. doi: 10.1073/pnas.89.22.10608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES