Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1573–1581. doi: 10.1093/genetics/153.4.1573

Transcriptional activation in yeast cells lacking transcription factor IIA.

S Chou 1, S Chatterjee 1, M Lee 1, K Struhl 1
PMCID: PMC1460864  PMID: 10581267

Abstract

The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.

Full Text

The Full Text of this article is available as a PDF (338.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apone L. M., Virbasius C. M., Reese J. C., Green M. R. Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 1996 Sep 15;10(18):2368–2380. doi: 10.1101/gad.10.18.2368. [DOI] [PubMed] [Google Scholar]
  2. Auble D. T., Hansen K. E., Mueller C. G., Lane W. S., Thorner J., Hahn S. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 1994 Aug 15;8(16):1920–1934. doi: 10.1101/gad.8.16.1920. [DOI] [PubMed] [Google Scholar]
  3. Bryant G. O., Martel L. S., Burley S. K., Berk A. J. Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. Genes Dev. 1996 Oct 1;10(19):2491–2504. doi: 10.1101/gad.10.19.2491. [DOI] [PubMed] [Google Scholar]
  4. Chen W., Struhl K. Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2691–2695. doi: 10.1073/pnas.85.8.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chi T., Carey M. Assembly of the isomerized TFIIA--TFIID--TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 1996 Oct 15;10(20):2540–2550. doi: 10.1101/gad.10.20.2540. [DOI] [PubMed] [Google Scholar]
  6. Chicca J. J., 2nd, Auble D. T., Pugh B. F. Cloning and biochemical characterization of TAF-172, a human homolog of yeast Mot1. Mol Cell Biol. 1998 Mar;18(3):1701–1710. doi: 10.1128/mcb.18.3.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cismowski M. J., Laff G. M., Solomon M. J., Reed S. I. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol Cell Biol. 1995 Jun;15(6):2983–2992. doi: 10.1128/mcb.15.6.2983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clemens K. E., Piras G., Radonovich M. F., Choi K. S., Duvall J. F., DeJong J., Roeder R., Brady J. N. Interaction of the human T-cell lymphotropic virus type 1 tax transactivator with transcription factor IIA. Mol Cell Biol. 1996 Sep;16(9):4656–4664. doi: 10.1128/mcb.16.9.4656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collart M. A., Struhl K. NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 1994 Mar 1;8(5):525–537. doi: 10.1101/gad.8.5.525. [DOI] [PubMed] [Google Scholar]
  10. Cormack B. P., Struhl K. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell. 1992 May 15;69(4):685–696. doi: 10.1016/0092-8674(92)90232-2. [DOI] [PubMed] [Google Scholar]
  11. Damania B., Lieberman P., Alwine J. C. Simian virus 40 large T antigen stabilizes the TATA-binding protein-TFIIA complex on the TATA element. Mol Cell Biol. 1998 Jul;18(7):3926–3935. doi: 10.1128/mcb.18.7.3926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Emami K. H., Jain A., Smale S. T. Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev. 1997 Nov 15;11(22):3007–3019. doi: 10.1101/gad.11.22.3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gadbois E. L., Chao D. M., Reese J. C., Green M. R., Young R. A. Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3145–3150. doi: 10.1073/pnas.94.7.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ge H., Roeder R. G. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J Biol Chem. 1994 Jun 24;269(25):17136–17140. [PubMed] [Google Scholar]
  15. Geiger J. H., Hahn S., Lee S., Sigler P. B. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science. 1996 May 10;272(5263):830–836. doi: 10.1126/science.272.5263.830. [DOI] [PubMed] [Google Scholar]
  16. Goppelt A., Stelzer G., Lottspeich F., Meisterernst M. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 1996 Jun 17;15(12):3105–3116. [PMC free article] [PubMed] [Google Scholar]
  17. Iyer V., Struhl K. Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol Cell Biol. 1995 Dec;15(12):7059–7066. doi: 10.1128/mcb.15.12.7059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kang J. J., Auble D. T., Ranish J. A., Hahn S. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Mol Cell Biol. 1995 Mar;15(3):1234–1243. doi: 10.1128/mcb.15.3.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim S., Na J. G., Hampsey M., Reinberg D. The Dr1/DRAP1 heterodimer is a global repressor of transcription in vivo. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):820–825. doi: 10.1073/pnas.94.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi N., Boyer T. G., Berk A. J. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol Cell Biol. 1995 Nov;15(11):6465–6473. doi: 10.1128/mcb.15.11.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kobayashi N., Horn P. J., Sullivan S. M., Triezenberg S. J., Boyer T. G., Berk A. J. DA-complex assembly activity required for VP16C transcriptional activation. Mol Cell Biol. 1998 Jul;18(7):4023–4031. doi: 10.1128/mcb.18.7.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koh S. S., Ansari A. Z., Ptashne M., Young R. A. An activator target in the RNA polymerase II holoenzyme. Mol Cell. 1998 May;1(6):895–904. doi: 10.1016/s1097-2765(00)80088-x. [DOI] [PubMed] [Google Scholar]
  23. Kokubo T., Swanson M. J., Nishikawa J. I., Hinnebusch A. G., Nakatani Y. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol Cell Biol. 1998 Feb;18(2):1003–1012. doi: 10.1128/mcb.18.2.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lagrange T., Kim T. K., Orphanides G., Ebright Y. W., Ebright R. H., Reinberg D. High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10620–10625. doi: 10.1073/pnas.93.20.10620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee M., Struhl K. A severely defective TATA-binding protein-TFIIB interaction does not preclude transcriptional activation in vivo. Mol Cell Biol. 1997 Mar;17(3):1336–1345. doi: 10.1128/mcb.17.3.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee M., Struhl K. Mutations on the DNA-binding surface of TATA-binding protein can specifically impair the response to acidic activators in vivo. Mol Cell Biol. 1995 Oct;15(10):5461–5469. doi: 10.1128/mcb.15.10.5461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lieberman P. M., Berk A. J. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA--promoter DNA complex formation. Genes Dev. 1994 May 1;8(9):995–1006. doi: 10.1101/gad.8.9.995. [DOI] [PubMed] [Google Scholar]
  28. MA D., Olave I., Merino A., Reinberg D. Separation of the transcriptional coactivator and antirepression functions of transcription factor IIA. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6583–6588. doi: 10.1073/pnas.93.13.6583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Madison J. M., Winston F. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Jan;17(1):287–295. doi: 10.1128/mcb.17.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mermelstein F., Yeung K., Cao J., Inostroza J. A., Erdjument-Bromage H., Eagelson K., Landsman D., Levitt P., Tempst P., Reinberg D. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 1996 Apr 15;10(8):1033–1048. doi: 10.1101/gad.10.8.1033. [DOI] [PubMed] [Google Scholar]
  31. Moqtaderi Z., Bai Y., Poon D., Weil P. A., Struhl K. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature. 1996 Sep 12;383(6596):188–191. doi: 10.1038/383188a0. [DOI] [PubMed] [Google Scholar]
  32. Moqtaderi Z., Keaveney M., Struhl K. The histone H3-like TAF is broadly required for transcription in yeast. Mol Cell. 1998 Nov;2(5):675–682. doi: 10.1016/s1097-2765(00)80165-3. [DOI] [PubMed] [Google Scholar]
  33. Nonet M., Scafe C., Sexton J., Young R. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol. 1987 May;7(5):1602–1611. doi: 10.1128/mcb.7.5.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Oelgeschläger T., Chiang C. M., Roeder R. G. Topology and reorganization of a human TFIID-promoter complex. Nature. 1996 Aug 22;382(6593):735–738. doi: 10.1038/382735a0. [DOI] [PubMed] [Google Scholar]
  35. Orphanides G., Lagrange T., Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev. 1996 Nov 1;10(21):2657–2683. doi: 10.1101/gad.10.21.2657. [DOI] [PubMed] [Google Scholar]
  36. Ozer J., Lezina L. E., Ewing J., Audi S., Lieberman P. M. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol. 1998 May;18(5):2559–2570. doi: 10.1128/mcb.18.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ozer J., Mitsouras K., Zerby D., Carey M., Lieberman P. M. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J Biol Chem. 1998 Jun 5;273(23):14293–14300. doi: 10.1074/jbc.273.23.14293. [DOI] [PubMed] [Google Scholar]
  38. Ozer J., Moore P. A., Bolden A. H., Lee A., Rosen C. A., Lieberman P. M. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 1994 Oct 1;8(19):2324–2335. doi: 10.1101/gad.8.19.2324. [DOI] [PubMed] [Google Scholar]
  39. Roeder R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci. 1996 Sep;21(9):327–335. [PubMed] [Google Scholar]
  40. Shen W. C., Green M. R. Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator. Cell. 1997 Aug 22;90(4):615–624. doi: 10.1016/s0092-8674(00)80523-1. [DOI] [PubMed] [Google Scholar]
  41. Shykind B. M., Kim J., Sharp P. A. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 1995 Jun 1;9(11):1354–1365. doi: 10.1101/gad.9.11.1354. [DOI] [PubMed] [Google Scholar]
  42. Stargell L. A., Struhl K. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science. 1995 Jul 7;269(5220):75–78. doi: 10.1126/science.7604282. [DOI] [PubMed] [Google Scholar]
  43. Tamai K. T., Liu X., Silar P., Sosinowski T., Thiele D. J. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol. 1994 Dec;14(12):8155–8165. doi: 10.1128/mcb.14.12.8155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tan S., Hunziker Y., Sargent D. F., Richmond T. J. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature. 1996 May 9;381(6578):127–151. doi: 10.1038/381127a0. [DOI] [PubMed] [Google Scholar]
  45. Thompson C. M., Young R. A. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4587–4590. doi: 10.1073/pnas.92.10.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Trueheart J., Boeke J. D., Fink G. R. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol Cell Biol. 1987 Jul;7(7):2316–2328. doi: 10.1128/mcb.7.7.2316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Valay J. G., Simon M., Dubois M. F., Bensaude O., Facca C., Faye G. The KIN28 gene is required both for RNA polymerase II mediated transcription and phosphorylation of the Rpb1p CTD. J Mol Biol. 1995 Jun 9;249(3):535–544. doi: 10.1006/jmbi.1995.0316. [DOI] [PubMed] [Google Scholar]
  48. Walker S. S., Reese J. C., Apone L. M., Green M. R. Transcription activation in cells lacking TAFIIS. Nature. 1996 Sep 12;383(6596):185–188. doi: 10.1038/383185a0. [DOI] [PubMed] [Google Scholar]
  49. Walker S. S., Shen W. C., Reese J. C., Apone L. M., Green M. R. Yeast TAF(II)145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell. 1997 Aug 22;90(4):607–614. doi: 10.1016/s0092-8674(00)80522-x. [DOI] [PubMed] [Google Scholar]
  50. Yokomori K., Zeidler M. P., Chen J. L., Verrijzer C. P., Mlodzik M., Tjian R. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev. 1994 Oct 1;8(19):2313–2323. doi: 10.1101/gad.8.19.2313. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES