Skip to main content
Genetics logoLink to Genetics
. 1999 Dec;153(4):1839–1850. doi: 10.1093/genetics/153.4.1839

Genetic analyses of visual pigments of the pigeon (Columba livia).

S Kawamura 1, N S Blow 1, S Yokoyama 1
PMCID: PMC1460878  PMID: 10581289

Abstract

We isolated five classes of retinal opsin genes rh1(Cl), rh2(Cl), sws1(Cl), sws2(Cl), and lws(Cl) from the pigeon; these encode RH1(Cl), RH2(Cl), SWS1(Cl), SWS2(Cl), and LWS(Cl) opsins, respectively. Upon binding to 11-cis-retinal, these opsins regenerate the corresponding photosensitive molecules, visual pigments. The absorbance spectra of visual pigments have a broad bell shape with the peak, being called lambdamax. Previously, the SWS1(Cl) opsin cDNA was isolated from the pigeon retinal RNA, expressed in cultured COS1 cells, reconstituted with 11-cis-retinal, and the lambdamax of the resulting SWS1(Cl) pigment was shown to be 393 nm. In this article, using the same methods, the lambdamax values of RH1(Cl), RH2(Cl), SWS2(Cl), and LWS(Cl) pigments were determined to be 502, 503, 448, and 559 nm, respectively. The pigeon is also known for its UV vision, detecting light at 320-380 nm. Being the only pigments that absorb light below 400 nm, the SWS1(Cl) pigments must mediate its UV vision. We also determined that a nonretinal P(Cl) pigment in the pineal gland of the pigeon has a lambdamax value at 481 nm.

Full Text

The Full Text of this article is available as a PDF (271.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOUGH D. S. Spectral sensitivity in the pigeon. J Opt Soc Am. 1957 Sep;47(9):827–833. doi: 10.1364/josa.47.000827. [DOI] [PubMed] [Google Scholar]
  2. Blackshaw S., Snyder S. H. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci. 1997 Nov 1;17(21):8083–8092. doi: 10.1523/JNEUROSCI.17-21-08083.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowmaker J. K., Heath L. A., Wilkie S. E., Hunt D. M. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997 Aug;37(16):2183–2194. doi: 10.1016/s0042-6989(97)00026-6. [DOI] [PubMed] [Google Scholar]
  4. Bowmaker J. K. The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res. 1977;17(10):1129–1138. doi: 10.1016/0042-6989(77)90147-x. [DOI] [PubMed] [Google Scholar]
  5. Chen D. M., Collins J. S., Goldsmith T. H. The ultraviolet receptor of bird retinas. Science. 1984 Jul 20;225(4659):337–340. doi: 10.1126/science.6740315. [DOI] [PubMed] [Google Scholar]
  6. Chen D. M., Goldsmith T. H. Four spectral classes of cone in the retinas of birds. J Comp Physiol A. 1986 Oct;159(4):473–479. doi: 10.1007/BF00604167. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Emmerton J., Schwemer J., Muth I., Schlecht P. Spectral transmission of the ocular media of the pegion (Columba livia). Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1382–1387. [PubMed] [Google Scholar]
  9. Govardovskii V. I., Zueva L. V. Visual pigments of chicken and pigeon. Vision Res. 1977;17(4):537–543. doi: 10.1016/0042-6989(77)90052-9. [DOI] [PubMed] [Google Scholar]
  10. Graf V., Norren D. V. A blue sensitive mechanism in the pigeon retina: lambda max 400 nm. Vision Res. 1974 Nov;14(11):1203–1209. doi: 10.1016/0042-6989(74)90217-x. [DOI] [PubMed] [Google Scholar]
  11. Hadjeb N., Berkowitz G. A. Preparation of T-over-hang vectors with high PCR product cloning efficiency. Biotechniques. 1996 Jan;20(1):20–22. doi: 10.2144/96201bm02. [DOI] [PubMed] [Google Scholar]
  12. Hargrave P. A., McDowell J. H., Curtis D. R., Wang J. K., Juszczak E., Fong S. L., Rao J. K., Argos P. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–244. doi: 10.1007/BF00535659. [DOI] [PubMed] [Google Scholar]
  13. Hisatomi O., Satoh T., Barthel L. K., Stenkamp D. L., Raymond P. A., Tokunaga F. Molecular cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Res. 1996 Apr;36(7):933–939. doi: 10.1016/0042-6989(95)00189-1. [DOI] [PubMed] [Google Scholar]
  14. Karnik S. S., Sakmar T. P., Chen H. B., Khorana H. G. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8459–8463. doi: 10.1073/pnas.85.22.8459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kawamura S., Yokoyama S. Expression of visual and nonvisual opsins in American chameleon. Vision Res. 1997 Jul;37(14):1867–1871. doi: 10.1016/s0042-6989(96)00309-4. [DOI] [PubMed] [Google Scholar]
  16. Kawamura S., Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998 Jan;38(1):37–44. doi: 10.1016/s0042-6989(97)00160-0. [DOI] [PubMed] [Google Scholar]
  17. Kawamura S., Yokoyama S. Molecular characterization of the pigeon P-opsin gene. Gene. 1996 Dec 5;182(1-2):213–214. doi: 10.1016/s0378-1119(96)00476-3. [DOI] [PubMed] [Google Scholar]
  18. Kawamura S., Yokoyama S. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Vision Res. 1996 Sep;36(18):2797–2804. doi: 10.1016/0042-6989(96)00034-x. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kreithen M. L., Eisner T. Ultraviolet light detection by the homing pigeon. Nature. 1978 Mar 23;272(5651):347–348. doi: 10.1038/272347a0. [DOI] [PubMed] [Google Scholar]
  21. Martin G. R., Muntz W. R. Spectral sensitivity of the red and yellow oil droplet fields of the pigeon (Columba livia). Nature. 1978 Aug 10;274(5671):620–621. doi: 10.1038/274620a0. [DOI] [PubMed] [Google Scholar]
  22. Max M., McKinnon P. J., Seidenman K. J., Barrett R. K., Applebury M. L., Takahashi J. S., Margolskee R. F. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995 Mar 10;267(5203):1502–1506. doi: 10.1126/science.7878470. [DOI] [PubMed] [Google Scholar]
  23. Molday R. S., MacKenzie D. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry. 1983 Feb 1;22(3):653–660. doi: 10.1021/bi00272a020. [DOI] [PubMed] [Google Scholar]
  24. Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry. 1990 Oct 16;29(41):9746–9752. doi: 10.1021/bi00493a034. [DOI] [PubMed] [Google Scholar]
  25. Nathans J., Hogness D. S. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell. 1983 Oct;34(3):807–814. doi: 10.1016/0092-8674(83)90537-8. [DOI] [PubMed] [Google Scholar]
  26. Nathans J., Piantanida T. P., Eddy R. L., Shows T. B., Hogness D. S. Molecular genetics of inherited variation in human color vision. Science. 1986 Apr 11;232(4747):203–210. doi: 10.1126/science.3485310. [DOI] [PubMed] [Google Scholar]
  27. Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986 Apr 11;232(4747):193–202. doi: 10.1126/science.2937147. [DOI] [PubMed] [Google Scholar]
  28. Norren D. V. Two short wavelength sensitive cone systems in pigeon, chicken and daw. Vision Res. 1975 Oct;15:1164–1166. doi: 10.1016/0042-6989(75)90017-6. [DOI] [PubMed] [Google Scholar]
  29. Ohguro H., Johnson R. S., Ericsson L. H., Walsh K. A., Palczewski K. Control of rhodopsin multiple phosphorylation. Biochemistry. 1994 Feb 1;33(4):1023–1028. doi: 10.1021/bi00170a022. [DOI] [PubMed] [Google Scholar]
  30. Okano T., Kojima D., Fukada Y., Shichida Y., Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5932–5936. doi: 10.1073/pnas.89.13.5932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okano T., Takanaka Y., Nakamura A., Hirunagi K., Adachi A., Ebihara S., Fukada Y. Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Brain Res Mol Brain Res. 1997 Oct 15;50(1-2):190–196. doi: 10.1016/s0169-328x(97)00184-8. [DOI] [PubMed] [Google Scholar]
  32. Okano T., Yoshizawa T., Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994 Nov 3;372(6501):94–97. doi: 10.1038/372094a0. [DOI] [PubMed] [Google Scholar]
  33. Remy M., Emmerton J. Behavioral spectral sensitivities of different retinal areas in pigeons. Behav Neurosci. 1989 Feb;103(1):170–177. doi: 10.1037//0735-7044.103.1.170. [DOI] [PubMed] [Google Scholar]
  34. SAID F. S., WEALE R. A. The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia. 1959;3:213–231. doi: 10.1159/000210900. [DOI] [PubMed] [Google Scholar]
  35. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  36. Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8309–8313. doi: 10.1073/pnas.86.21.8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Soni B. G., Foster R. G. A novel and ancient vertebrate opsin. FEBS Lett. 1997 Apr 14;406(3):279–283. doi: 10.1016/s0014-5793(97)00287-1. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vos Hzn J. J., Coemans M. A., Nuboer J. F. The photopic sensitivity of the yellow field of the pigeon's retina to ultraviolet light. Vision Res. 1994 Jun;34(11):1419–1425. doi: 10.1016/0042-6989(94)90142-2. [DOI] [PubMed] [Google Scholar]
  40. Wald G. HUMAN VISION AND THE SPECTRUM. Science. 1945 Jun 29;101(2635):653–658. doi: 10.1126/science.101.2635.653. [DOI] [PubMed] [Google Scholar]
  41. Wang J. K., McDowell J. H., Hargrave P. A. Site of attachment of 11-cis-retinal in bovine rhodopsin. Biochemistry. 1980 Oct 28;19(22):5111–5117. doi: 10.1021/bi00563a027. [DOI] [PubMed] [Google Scholar]
  42. Wortel J. F., Wubbels R. J., Nuboer J. F. Photopic spectral sensitivities of the red and the yellow field of the pigeon retina. Vision Res. 1984;24(9):1107–1113. doi: 10.1016/0042-6989(84)90089-0. [DOI] [PubMed] [Google Scholar]
  43. Wright A. A. The influence of ultraviolet radiation on the pigeon's color discrimination. J Exp Anal Behav. 1972 May;17(3):325–337. doi: 10.1901/jeab.1972.17-325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yokoyama R., Yokoyama S. Molecular characterization of a blue visual pigment gene in the fish Astyanax fasciatus. FEBS Lett. 1993 Nov 8;334(1):27–31. doi: 10.1016/0014-5793(93)81673-n. [DOI] [PubMed] [Google Scholar]
  45. Yokoyama S. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol Biol Evol. 1995 Jan;12(1):53–61. doi: 10.1093/oxfordjournals.molbev.a040190. [DOI] [PubMed] [Google Scholar]
  46. Yokoyama S. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Mol Biol Evol. 1994 Jan;11(1):32–39. doi: 10.1093/oxfordjournals.molbev.a040090. [DOI] [PubMed] [Google Scholar]
  47. Yokoyama S., Radlwimmer F. B., Kawamura S. Regeneration of ultraviolet pigments of vertebrates. FEBS Lett. 1998 Feb 20;423(2):155–158. doi: 10.1016/s0014-5793(98)00086-6. [DOI] [PubMed] [Google Scholar]
  48. Yokoyama S., Radlwimmer F. B. The "five-sites" rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998 May;15(5):560–567. doi: 10.1093/oxfordjournals.molbev.a025956. [DOI] [PubMed] [Google Scholar]
  49. Yokoyama S., Radlwimmer F. B. The molecular genetics of red and green color vision in mammals. Genetics. 1999 Oct;153(2):919–932. doi: 10.1093/genetics/153.2.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yokoyama S., Zhang H. Cloning and characterization of the pineal gland-specific opsin gene of marine lamprey (Petromyzon marinus). Gene. 1997 Nov 20;202(1-2):89–93. doi: 10.1016/s0378-1119(97)00458-7. [DOI] [PubMed] [Google Scholar]
  51. Zhukovsky E. A., Oprian D. D. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989 Nov 17;246(4932):928–930. doi: 10.1126/science.2573154. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES