Skip to main content
Genetics logoLink to Genetics
. 2000 Feb;154(2):503–512. doi: 10.1093/genetics/154.2.503

Antagonism of ultraviolet-light mutagenesis by the methyl-directed mismatch-repair system of Escherichia coli.

H Liu 1, S R Hewitt 1, J B Hays 1
PMCID: PMC1460951  PMID: 10655206

Abstract

Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2.MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to "matched" photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC --> CTC and CTT --> CTC transitions. F' lacZ targets were mated from mut(+) donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu(+) mut(+) recipients, a range of UV fluences induced lac(+) revertant frequencies of 4-25 x 10(-8); these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd(-) defect, it appears not to involve transcription-coupled excision repair. In mut(+) umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m(2)) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5-10 x 10(-8). Thus, at UV doses too low to induce SOS functions, such as Umu(2)'D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.

Full Text

The Full Text of this article is available as a PDF (174.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. J., Makhov A., Grilley M., Taylor J., Thresher R., Modrich P., Griffith J. D. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 1997 Jul 16;16(14):4467–4476. doi: 10.1093/emboj/16.14.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee S. K., Christensen R. B., Lawrence C. W., LeClerc J. E. Frequency and spectrum of mutations produced by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8141–8145. doi: 10.1073/pnas.85.21.8141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bridges B. A., Munson R. J. Mutagenesis in Escherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision-repair. Proc R Soc Lond B Biol Sci. 1968 Nov 5;171(1023):213–226. doi: 10.1098/rspb.1968.0065. [DOI] [PubMed] [Google Scholar]
  4. Caillet-Fauquet P., Maenhaut-Michel G. Nature of the SOS mutator activity: genetic characterization of untargeted mutagenesis in Escherichia coli. Mol Gen Genet. 1988 Aug;213(2-3):491–498. doi: 10.1007/BF00339621. [DOI] [PubMed] [Google Scholar]
  5. Carty M. P., Hauser J., Levine A. S., Dixon K. Replication and mutagenesis of UV-damaged DNA templates in human and monkey cell extracts. Mol Cell Biol. 1993 Jan;13(1):533–542. doi: 10.1128/mcb.13.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christensen J. R., LeClerc J. E., Tata P. V., Christensen R. B., Lawrence C. W. UmuC function is not essential for the production of all targeted lacI mutations induced by ultraviolet light. J Mol Biol. 1988 Oct 5;203(3):635–641. doi: 10.1016/0022-2836(88)90198-2. [DOI] [PubMed] [Google Scholar]
  7. Christensen R. B., Christensen J. R., Koenig I., Lawrence C. W. Untargeted mutagenesis induced by UV in the lacI gene of Escherichia coli. Mol Gen Genet. 1985;201(1):30–34. doi: 10.1007/BF00397982. [DOI] [PubMed] [Google Scholar]
  8. Cooper D. L., Lahue R. S., Modrich P. Methyl-directed mismatch repair is bidirectional. J Biol Chem. 1993 Jun 5;268(16):11823–11829. [PubMed] [Google Scholar]
  9. Crowley D. J., Hanawalt P. C. Induction of the SOS response increases the efficiency of global nucleotide excision repair of cyclobutane pyrimidine dimers, but not 6-4 photoproducts, in UV-irradiated Escherichia coli. J Bacteriol. 1998 Jul;180(13):3345–3352. doi: 10.1128/jb.180.13.3345-3352.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cupples C. G., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5345–5349. doi: 10.1073/pnas.86.14.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cupples C. G., Miller J. H. Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase. Genetics. 1988 Nov;120(3):637–644. doi: 10.1093/genetics/120.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drummond J. T., Anthoney A., Brown R., Modrich P. Cisplatin and adriamycin resistance are associated with MutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J Biol Chem. 1996 Aug 16;271(33):19645–19648. doi: 10.1074/jbc.271.33.19645. [DOI] [PubMed] [Google Scholar]
  13. Duckett D. R., Drummond J. T., Murchie A. I., Reardon J. T., Sancar A., Lilley D. M., Modrich P. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6443–6447. doi: 10.1073/pnas.93.13.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Echols H. Mutation rate: some biological and biochemical considerations. Biochimie. 1982 Aug-Sep;64(8-9):571–575. doi: 10.1016/s0300-9084(82)80089-8. [DOI] [PubMed] [Google Scholar]
  15. Elledge S. J., Walker G. C. Proteins required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. J Mol Biol. 1983 Feb 25;164(2):175–192. doi: 10.1016/0022-2836(83)90074-8. [DOI] [PubMed] [Google Scholar]
  16. Feinstein S. I., Low K. B. Hyper-recombining recipient strains in bacterial conjugation. Genetics. 1986 May;113(1):13–33. doi: 10.1093/genetics/113.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feng G., Tsui H. C., Winkler M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996 Apr;178(8):2388–2396. doi: 10.1128/jb.178.8.2388-2396.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Feng W. Y., Hays J. B. DNA structures generated during recombination initiated by mismatch repair of UV-irradiated nonreplicating phage DNA in Escherichia coli: requirements for helicase, exonucleases, and RecF and RecBCD functions. Genetics. 1995 Aug;140(4):1175–1186. doi: 10.1093/genetics/140.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Feng W. Y., Lee E. H., Hays J. B. Recombinagenic processing of UV-light photoproducts in nonreplicating phage DNA by the Escherichia coli methyl-directed mismatch repair system. Genetics. 1991 Dec;129(4):1007–1020. doi: 10.1093/genetics/129.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fijalkowska I. J., Dunn R. L., Schaaper R. M. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J Bacteriol. 1997 Dec;179(23):7435–7445. doi: 10.1128/jb.179.23.7435-7445.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Foster P. L. Are adaptive mutations due to a decline in mismatch repair? The evidence is lacking. Mutat Res. 1999 Mar;436(2):179–184. doi: 10.1016/s1383-5742(98)00023-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 1997 Sep 15;11(18):2426–2437. doi: 10.1101/gad.11.18.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Humayun M. Z. SOS and Mayday: multiple inducible mutagenic pathways in Escherichia coli. Mol Microbiol. 1998 Dec;30(5):905–910. doi: 10.1046/j.1365-2958.1998.01120.x. [DOI] [PubMed] [Google Scholar]
  24. Kat A., Thilly W. G., Fang W. H., Longley M. J., Li G. M., Modrich P. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6424–6428. doi: 10.1073/pnas.90.14.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet. 1977 Nov 14;156(2):121–131. doi: 10.1007/BF00283484. [DOI] [PubMed] [Google Scholar]
  26. Kunz B. A., Glickman B. W. The role of pyrimidine dimers as premutagenic lesions: a study of targeted vs. untargeted mutagenesis in the lacI gene of Escherichia coli. Genetics. 1984 Mar;106(3):347–364. doi: 10.1093/genetics/106.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  28. Mellon I., Rajpal D. K., Koi M., Boland C. R., Champe G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science. 1996 Apr 26;272(5261):557–560. doi: 10.1126/science.272.5261.557. [DOI] [PubMed] [Google Scholar]
  29. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Napolitano R. L., Lambert I. B., Fuchs R. P. SOS factors involved in translesion synthesis. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5733–5738. doi: 10.1073/pnas.94.11.5733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peng W., Shaw B. R. Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC-->TT transitions. Biochemistry. 1996 Aug 6;35(31):10172–10181. doi: 10.1021/bi960001x. [DOI] [PubMed] [Google Scholar]
  32. Person S., McCloskey J. A., Snipes W., Bockrath R. C. Ultraviolet mutagenesis and its repair in an Escherichia coli strain containing a nonsense codon. Genetics. 1974 Dec;78(4):1035–1049. doi: 10.1093/genetics/78.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Petit M. A., Dimpfl J., Radman M., Echols H. Control of large chromosomal duplications in Escherichia coli by the mismatch repair system. Genetics. 1991 Oct;129(2):327–332. doi: 10.1093/genetics/129.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rayssiguier C., Thaler D. S., Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. doi: 10.1038/342396a0. [DOI] [PubMed] [Google Scholar]
  35. Schaaper R. M., Radman M. The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J. 1989 Nov;8(11):3511–3516. doi: 10.1002/j.1460-2075.1989.tb08516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Selby C. P., Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53–58. doi: 10.1126/science.8465200. [DOI] [PubMed] [Google Scholar]
  37. Selby C. P., Sancar A. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J Biol Chem. 1995 Mar 3;270(9):4882–4889. doi: 10.1074/jbc.270.9.4882. [DOI] [PubMed] [Google Scholar]
  38. Selby C. P., Witkin E. M., Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11574–11578. doi: 10.1073/pnas.88.24.11574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Swann P. F., Waters T. R., Moulton D. C., Xu Y. Z., Zheng Q., Edwards M., Mace R. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996 Aug 23;273(5278):1109–1111. doi: 10.1126/science.273.5278.1109. [DOI] [PubMed] [Google Scholar]
  40. Tessman I., Liu S. K., Kennedy M. A. Mechanism of SOS mutagenesis of UV-irradiated DNA: mostly error-free processing of deaminated cytosine. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1159–1163. doi: 10.1073/pnas.89.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thomas D. C., Kunkel T. A. Replication of UV-irradiated DNA in human cell extracts: evidence for mutagenic bypass of pyrimidine dimers. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7744–7748. doi: 10.1073/pnas.90.16.7744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang H., Lawrence C. W., Li G. M., Hays J. B. Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases. J Biol Chem. 1999 Jun 11;274(24):16894–16900. doi: 10.1074/jbc.274.24.16894. [DOI] [PubMed] [Google Scholar]
  43. Worth L., Jr, Clark S., Radman M., Modrich P. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3238–3241. doi: 10.1073/pnas.91.8.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu T. H., Marinus M. G. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol. 1994 Sep;176(17):5393–5400. doi: 10.1128/jb.176.17.5393-5400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES