Skip to main content
Genetics logoLink to Genetics
. 2000 Apr;154(4):1473–1484. doi: 10.1093/genetics/154.4.1473

A role for the noncatalytic N terminus in the function of Cdc25, a Saccharomyces cerevisiae Ras-guanine nucleotide exchange factor.

R A Chen 1, T Michaeli 1, L Van Aelst 1, R Ballester 1
PMCID: PMC1461032  PMID: 10747046

Abstract

The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor (GEF) for Ras proteins. Its catalytic domain is highly homologous to Ras-GEFs from all eukaryotes. Even though Cdc25 is the first Ras-GEF identified in any organism, we still know very little about how its function is regulated in yeast. In this work we provide evidence for the involvement of the N terminus of Cdc25 in the regulation of its activity. A truncated CDC25 lacking the noncatalytic C-terminal coding sequence was identified in a screen of high-copy suppressors of the heat-shock-sensitive phenotype of strains in which the Ras pathway is hyper-activated. The truncated gene acts as a dominant-negative mutant because it only suppresses the heat-shock sensitivity of strains that require the function of CDC25. Our two-hybrid assays and immunoprecipitation analyses show interactions between the N terminus of Cdc25 and itself, the C terminus, and the full-length protein. These results suggest that the dominant-negative effect may be a result of oligomerization with endogenous Cdc25. Further evidence of the role of the N terminus of Cdc25 in the regulation of its activity is provided by the mapping of the activating mutation of CDC25HS20 to the serine residue at position 365 in the noncatalytic N-terminal domain. This mutation induces a phenotype similar to activating mutants of other genes in the Ras pathway in yeast. Hence, the N terminus may exert a negative control on the catalytic activity of the protein. Taken together these results suggest that the N terminus plays a crucial role in regulating Cdc25 and consequently Ras activity, which in S. cerevisiae is essential for cell cycle progression.

Full Text

The Full Text of this article is available as a PDF (563.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anborgh P. H., Qian X., Papageorge A. G., Vass W. C., DeClue J. E., Lowy D. R. Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf. Mol Cell Biol. 1999 Jul;19(7):4611–4622. doi: 10.1128/mcb.19.7.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen L. B., Ballester R., Marchuk D. A., Chang E., Gutmann D. H., Saulino A. M., Camonis J., Wigler M., Collins F. S. A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Mol Cell Biol. 1993 Jan;13(1):487–495. doi: 10.1128/mcb.13.1.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballester R., Michaeli T., Ferguson K., Xu H. P., McCormick F., Wigler M. Genetic analysis of mammalian GAP expressed in yeast. Cell. 1989 Nov 17;59(4):681–686. doi: 10.1016/0092-8674(89)90014-7. [DOI] [PubMed] [Google Scholar]
  4. Banroques J., Delahodde A., Jacq C. A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell. 1986 Sep 12;46(6):837–844. doi: 10.1016/0092-8674(86)90065-6. [DOI] [PubMed] [Google Scholar]
  5. Baouz S., Jacquet E., Bernardi A., Parmeggiani A. The N-terminal moiety of CDC25(Mm), a GDP/GTP exchange factor of Ras proteins, controls the activity of the catalytic domain. Modulation by calmodulin and calpain. J Biol Chem. 1997 Mar 7;272(10):6671–6676. doi: 10.1074/jbc.272.10.6671. [DOI] [PubMed] [Google Scholar]
  6. Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
  7. Boriack-Sjodin P. A., Margarit S. M., Bar-Sagi D., Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998 Jul 23;394(6691):337–343. doi: 10.1038/28548. [DOI] [PubMed] [Google Scholar]
  8. Boy-Marcotte E., Ikonomi P., Jacquet M. SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation. Mol Biol Cell. 1996 Apr;7(4):529–539. doi: 10.1091/mbc.7.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Broek D., Toda T., Michaeli T., Levin L., Birchmeier C., Zoller M., Powers S., Wigler M. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell. 1987 Mar 13;48(5):789–799. doi: 10.1016/0092-8674(87)90076-6. [DOI] [PubMed] [Google Scholar]
  10. Buchsbaum R., Telliez J. B., Goonesekera S., Feig L. A. The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol Cell Biol. 1996 Sep;16(9):4888–4896. doi: 10.1128/mcb.16.9.4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Byrne J. L., Paterson H. F., Marshall C. J. p21Ras activation by the guanine nucleotide exchange factor Sos, requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene. 1996 Nov 21;13(10):2055–2065. [PubMed] [Google Scholar]
  12. Camus C., Geymonat M., Garreau H., Baudet-Nessler S., Jacquet M. Dimerization of Cdc25p, the guanine-nucleotide exchange factor for Ras from Saccharomyces cerevisiae, and its interaction with Sdc25p. Eur J Biochem. 1997 Jul 15;247(2):703–708. doi: 10.1111/j.1432-1033.1997.00703.x. [DOI] [PubMed] [Google Scholar]
  13. Chardin P., Camonis J. H., Gale N. W., van Aelst L., Schlessinger J., Wigler M. H., Bar-Sagi D. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science. 1993 May 28;260(5112):1338–1343. doi: 10.1126/science.8493579. [DOI] [PubMed] [Google Scholar]
  14. Chen R. H., Corbalan-Garcia S., Bar-Sagi D. The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 1997 Mar 17;16(6):1351–1359. doi: 10.1093/emboj/16.6.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cid V. J., Durán A., del Rey F., Snyder M. P., Nombela C., Sánchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev. 1995 Sep;59(3):345–386. doi: 10.1128/mr.59.3.345-386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Corbalan-Garcia S., Margarit S. M., Galron D., Yang S. S., Bar-Sagi D. Regulation of Sos activity by intramolecular interactions. Mol Cell Biol. 1998 Feb;18(2):880–886. doi: 10.1128/mcb.18.2.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  18. Fam N. P., Fan W. T., Wang Z., Zhang L. J., Chen H., Moran M. F. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol Cell Biol. 1997 Mar;17(3):1396–1406. doi: 10.1128/mcb.17.3.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Farnsworth C. L., Freshney N. W., Rosen L. B., Ghosh A., Greenberg M. E., Feig L. A. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature. 1995 Aug 10;376(6540):524–527. doi: 10.1038/376524a0. [DOI] [PubMed] [Google Scholar]
  20. Freeman N. L., Lila T., Mintzer K. A., Chen Z., Pahk A. J., Ren R., Drubin D. G., Field J. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol Cell Biol. 1996 Feb;16(2):548–556. doi: 10.1128/mcb.16.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Garreau H., Geymonat M., Renault G., Jacquet M. Membrane-anchoring domains of Cdc25p, a Saccharomyces cerevisiae ras exchange factor. Biol Cell. 1996;86(2-3):93–102. doi: 10.1016/0248-4900(96)84771-x. [DOI] [PubMed] [Google Scholar]
  22. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  23. Goldberg D., Segal M., Levitzki A. Cdc25 is not the signal receiver for glucose induced cAMP response in S. cerevisiae. FEBS Lett. 1994 Dec 19;356(2-3):249–254. doi: 10.1016/0014-5793(94)01273-3. [DOI] [PubMed] [Google Scholar]
  24. Gross E., Goldberg D., Levitzki A. Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras. Nature. 1992 Dec 24;360(6406):762–765. doi: 10.1038/360762a0. [DOI] [PubMed] [Google Scholar]
  25. Gross E., Marbach I., Engelberg D., Segal M., Simchen G., Levitzki A. Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein. Mol Cell Biol. 1992 Jun;12(6):2653–2661. doi: 10.1128/mcb.12.6.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jung V., Wei W., Ballester R., Camonis J., Mi S., Van Aelst L., Wigler M., Broek D. Two types of RAS mutants that dominantly interfere with activators of RAS. Mol Cell Biol. 1994 Jun;14(6):3707–3718. doi: 10.1128/mcb.14.6.3707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kiyono M., Satoh T., Kaziro Y. G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4826–4831. doi: 10.1073/pnas.96.9.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lai C. C., Boguski M., Broek D., Powers S. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol Cell Biol. 1993 Mar;13(3):1345–1352. doi: 10.1128/mcb.13.3.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lowy D. R., Willumsen B. M. Function and regulation of ras. Annu Rev Biochem. 1993;62:851–891. doi: 10.1146/annurev.bi.62.070193.004223. [DOI] [PubMed] [Google Scholar]
  30. Morishita T., Mitsuzawa H., Nakafuku M., Nakamura S., Hattori S., Anraku Y. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Science. 1995 Nov 17;270(5239):1213–1215. doi: 10.1126/science.270.5239.1213. [DOI] [PubMed] [Google Scholar]
  31. Munder T., Küntzel H. Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett. 1989 Jan 2;242(2):341–345. doi: 10.1016/0014-5793(89)80498-3. [DOI] [PubMed] [Google Scholar]
  32. Nikawa J., Cameron S., Toda T., Ferguson K. M., Wigler M. Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev. 1987 Nov;1(9):931–937. doi: 10.1101/gad.1.9.931. [DOI] [PubMed] [Google Scholar]
  33. Qian X., Vass W. C., Papageorge A. G., Anborgh P. H., Lowy D. R. N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains. Mol Cell Biol. 1998 Feb;18(2):771–778. doi: 10.1128/mcb.18.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Quilliam L. A., Khosravi-Far R., Huff S. Y., Der C. J. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays. 1995 May;17(5):395–404. doi: 10.1002/bies.950170507. [DOI] [PubMed] [Google Scholar]
  35. Rose M. D., Broach J. R. Cloning genes by complementation in yeast. Methods Enzymol. 1991;194:195–230. doi: 10.1016/0076-6879(91)94017-7. [DOI] [PubMed] [Google Scholar]
  36. Sass P., Field J., Nikawa J., Toda T., Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9303–9307. doi: 10.1073/pnas.83.24.9303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tanaka K., Lin B. K., Wood D. R., Tamanoi F. IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):468–472. doi: 10.1073/pnas.88.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tanaka K., Matsumoto K., Toh-E A. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Feb;9(2):757–768. doi: 10.1128/mcb.9.2.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tanaka K., Nakafuku M., Satoh T., Marshall M. S., Gibbs J. B., Matsumoto K., Kaziro Y., Toh-e A. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell. 1990 Mar 9;60(5):803–807. doi: 10.1016/0092-8674(90)90094-u. [DOI] [PubMed] [Google Scholar]
  40. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985 Jan;40(1):27–36. doi: 10.1016/0092-8674(85)90305-8. [DOI] [PubMed] [Google Scholar]
  41. Van Aelst L., Boy-Marcotte E., Camonis J. H., Thevelein J. M., Jacquet M. The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. Eur J Biochem. 1990 Nov 13;193(3):675–680. doi: 10.1111/j.1432-1033.1990.tb19386.x. [DOI] [PubMed] [Google Scholar]
  42. Verna J., Lodder A., Lee K., Vagts A., Ballester R. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13804–13809. doi: 10.1073/pnas.94.25.13804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zippel R., Orecchia S., Sturani E., Martegani E. The brain specific Ras exchange factor CDC25 Mm: modulation of its activity through Gi-protein-mediated signals. Oncogene. 1996 Jun 20;12(12):2697–2703. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES