Abstract
We develop a mixed-model approach for QTL analysis in crosses between outbred lines that allows for QTL segregation within lines as well as for differences in mean QTL effects between lines. We also propose a method called "segment mapping" that is based in partitioning the genome in a series of segments. The expected change in mean according to percentage of breed origin, together with the genetic variance associated with each segment, is estimated using maximum likelihood. The method also allows the estimation of differences in additive variances between the parental lines. Completely fixed random and mixed models together with segment mapping are compared via simulation. The segment mapping and mixed-model behaviors are similar to those of classical methods, either the fixed or random models, under simple genetic models (a single QTL with alternative alleles fixed in each line), whereas they provide less biased estimates and have higher power than fixed or random models in more complex situations, i.e., when the QTL are segregating within the parental lines. The segment mapping approach is particularly useful to determining which chromosome regions are likely to contain QTL when these are linked.
Full Text
The Full Text of this article is available as a PDF (270.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson L., Haley C. S., Ellegren H., Knott S. A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994 Mar 25;263(5154):1771–1774. doi: 10.1126/science.8134840. [DOI] [PubMed] [Google Scholar]
- Goldgar D. E. Multipoint analysis of human quantitative genetic variation. Am J Hum Genet. 1990 Dec;47(6):957–967. [PMC free article] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeschele I., Uimari P., Grignola F. E., Zhang Q., Gage K. M. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics. 1997 Nov;147(3):1445–1457. doi: 10.1093/genetics/147.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt G. J., Guzmán-Novoa E., Fondrk M. K., Page R. E., Jr Quantitative trait loci for honey bee stinging behavior and body size. Genetics. 1998 Mar;148(3):1203–1213. doi: 10.1093/genetics/148.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodolphe F., Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics. 1993 Aug;134(4):1277–1288. doi: 10.1093/genetics/134.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walling G. A., Archibald A. L., Cattermole J. A., Downing A. C., Finlayson H. A., Nicholson D., Visscher P. M., Walker C. A., Haley C. S. Mapping of quantitative trait loci on porcine chromosome 4. Anim Genet. 1998 Dec;29(6):415–424. doi: 10.1046/j.1365-2052.1998.296360.x. [DOI] [PubMed] [Google Scholar]
- Wang T., Fernando R. L., Grossman M. Genetic evaluation by best linear unbiased prediction using marker and trait information in a multibreed population. Genetics. 1998 Jan;148(1):507–515. doi: 10.1093/genetics/148.1.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu S. Mapping quantitative trait loci using multiple families of line crosses. Genetics. 1998 Jan;148(1):517–524. doi: 10.1093/genetics/148.1.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Koning D. J., Janss L. L., Rattink A. P., van Oers P. A., de Vries B. J., Groenen M. A., van der Poel J. J., de Groot P. N., Brascamp E. W., van Arendonk J. A. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics. 1999 Aug;152(4):1679–1690. doi: 10.1093/genetics/152.4.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]