Abstract
We show how the phenomena of genetic dominance, overdominance, additivity, and epistasis are generic features of simple diploid gene regulatory networks. These regulatory network models are together sufficiently complex to catch most of the suggested molecular mechanisms responsible for generating dominant mutations. These include reduced gene dosage, expression or protein activity (haploinsufficiency), increased gene dosage, ectopic or temporarily altered mRNA expression, increased or constitutive protein activity, and dominant negative effects. As classical genetics regards the phenomenon of dominance to be generated by intralocus interactions, we have studied two one-locus models, one with a negative autoregulatory feedback loop, and one with a positive autoregulatory feedback loop. To include the phenomena of epistasis and downstream regulatory effects, a model of a three-locus signal transduction network is also analyzed. It is found that genetic dominance as well as overdominance may be an intra- as well as interlocus interaction phenomenon. In the latter case the dominance phenomenon is intimately connected to either feedback-mediated epistasis or downstream-mediated epistasis. It appears that in the intra- as well as the interlocus case there is considerable room for additive gene action, which may explain to some degree the predictive power of quantitative genetic theory, with its emphasis on this type of gene action. Furthermore, the results illuminate and reconcile the prevailing explanations of heterosis, and they support the old conjecture that the phenomenon of dominance may have an evolutionary explanation related to life history strategy.
Full Text
The Full Text of this article is available as a PDF (157.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bray D. Protein molecules as computational elements in living cells. Nature. 1995 Jul 27;376(6538):307–312. doi: 10.1038/376307a0. [DOI] [PubMed] [Google Scholar]
- Cheverud J. M., Routman E. J. Epistasis and its contribution to genetic variance components. Genetics. 1995 Mar;139(3):1455–1461. doi: 10.1093/genetics/139.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Damerval C., Maurice A., Josse J. M., de Vienne D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics. 1994 May;137(1):289–301. doi: 10.1093/genetics/137.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davenport C. B. DEGENERATION, ALBINISM AND INBREEDING. Science. 1908 Oct 2;28(718):454–455. doi: 10.1126/science.28.718.454-b. [DOI] [PubMed] [Google Scholar]
- Doebley J., Stec A., Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995 Sep;141(1):333–346. doi: 10.1093/genetics/141.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein J. The effect of linkage on directional selection. Genetics. 1965 Aug;52(2):349–363. doi: 10.1093/genetics/52.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
- Glass L. Classification of biological networks by their qualitative dynamics. J Theor Biol. 1975 Oct;54(1):85–107. doi: 10.1016/s0022-5193(75)80056-7. [DOI] [PubMed] [Google Scholar]
- Grossniklaus U., Madhusudhan M. S., Nanjundiah V. Nonlinear enzyme kinetics can lead to high metabolic flux control coefficients: implications for the evolution of dominance. J Theor Biol. 1996 Oct 7;182(3):299–302. doi: 10.1006/jtbi.1996.0167. [DOI] [PubMed] [Google Scholar]
- Hoeschele I. Additive and nonadditive genetic variance in female fertility of Holsteins. J Dairy Sci. 1991 May;74(5):1743–1752. doi: 10.3168/jds.S0022-0302(91)78337-9. [DOI] [PubMed] [Google Scholar]
- Hollick J. B., Chandler V. L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics. 1998 Oct;150(2):891–897. doi: 10.1093/genetics/150.2.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaenisch R. Transgenic animals. Science. 1988 Jun 10;240(4858):1468–1474. doi: 10.1126/science.3287623. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Kahn D., Westerhoff H. V. Control theory of regulatory cascades. J Theor Biol. 1991 Nov 21;153(2):255–285. doi: 10.1016/s0022-5193(05)80426-6. [DOI] [PubMed] [Google Scholar]
- Lefstin J. A., Yamamoto K. R. Allosteric effects of DNA on transcriptional regulators. Nature. 1998 Apr 30;392(6679):885–888. doi: 10.1038/31860. [DOI] [PubMed] [Google Scholar]
- Lewontin R. C. Annotation: the analysis of variance and the analysis of causes. Am J Hum Genet. 1974 May;26(3):400–411. [PMC free article] [PubMed] [Google Scholar]
- Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merilä J., Sheldon B. C. Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity (Edinb) 1999 Aug;83(Pt 2):103–109. doi: 10.1046/j.1365-2540.1999.00585.x. [DOI] [PubMed] [Google Scholar]
- Mestl T., Plahte E., Omholt S. W. A mathematical framework for describing and analysing gene regulatory networks. J Theor Biol. 1995 Sep 21;176(2):291–300. doi: 10.1006/jtbi.1995.0199. [DOI] [PubMed] [Google Scholar]
- Orr H. A. A test of Fisher's theory of dominance. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11413–11415. doi: 10.1073/pnas.88.24.11413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Phillips P. C. The language of gene interaction. Genetics. 1998 Jul;149(3):1167–1171. doi: 10.1093/genetics/149.3.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plahte E., Mestl T., Omholt S. W. A methodological basis for description and analysis of systems with complex switch-like interactions. J Math Biol. 1998 Mar;36(4):321–348. doi: 10.1007/s002850050103. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol. 1969 Dec;25(3):370–379. doi: 10.1016/s0022-5193(69)80027-5. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Concepts relating the behavior of biochemical systems to their underlying molecular properties. Arch Biochem Biophys. 1971 Aug;145(2):612–621. doi: 10.1016/s0003-9861(71)80021-8. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Dominance according to metabolic control analysis: major achievement or house of cards? J Theor Biol. 1992 Jan 7;154(1):131–136. doi: 10.1016/s0022-5193(05)80194-8. [DOI] [PubMed] [Google Scholar]
- Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alternative methods of analysis. J Biol Chem. 1992 Nov 15;267(32):22934–22943. [PubMed] [Google Scholar]
- Sorribas A., Savageau M. A. A comparison of variant theories of intact biochemical systems. II. Flux-oriented and metabolic control theories. Math Biosci. 1989 Jun;94(2):195–238. doi: 10.1016/0025-5564(89)90065-5. [DOI] [PubMed] [Google Scholar]
- Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M., Orr H. A. The dominance theory of Haldane's rule. Genetics. 1995 May;140(1):389–402. doi: 10.1093/genetics/140.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang R. L., Stec A., Hey J., Lukens L., Doebley J. The limits of selection during maize domestication. Nature. 1999 Mar 18;398(6724):236–239. doi: 10.1038/18435. [DOI] [PubMed] [Google Scholar]
- Wilkie A. O. The molecular basis of genetic dominance. J Med Genet. 1994 Feb;31(2):89–98. doi: 10.1136/jmg.31.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao J., Li J., Yuan L., Tanksley S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Q., Saghai Maroof M. A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226–9231. doi: 10.1073/pnas.94.17.9226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vienne D., Maurice A., Josse J. M., Leonardi A., Damerval C. Mapping factors controlling genetic expression. Cell Mol Biol (Noisy-le-grand) 1994 Feb;40(1):29–39. [PubMed] [Google Scholar]
- van der Gugten A. A., Westerhoff H. V. Internal regulation of a modular system: the different faces of internal control. Biosystems. 1997;44(2):79–106. doi: 10.1016/s0303-2647(97)00041-5. [DOI] [PubMed] [Google Scholar]