Skip to main content
Genetics logoLink to Genetics
. 2000 Jun;155(2):989–992. doi: 10.1093/genetics/155.2.989

A glucose transporter chimera confers a dominant negative glucose starvation phenotype in Saccharomyces cerevisiae.

P W Sherwood 1, I Katic 1, P Sanz 1, M Carlson 1
PMCID: PMC1461109  PMID: 10835416

Abstract

A family of glucose transporters mediates glucose uptake in Saccharomyces cerevisiae. We show that the dominant mutation GSF4-1, which impairs glucose repression of SUC2, results in a nonfunctional chimera of the transporters Hxt1p and Hxt4p. Hxt1/4p inhibits the function of wild-type glucose transporters. Similar mutations may facilitate analysis of the major facilitator superfamily.

Full Text

The Full Text of this article is available as a PDF (142.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisson L. F., Coons D. M., Kruckeberg A. L., Lewis D. A. Yeast sugar transporters. Crit Rev Biochem Mol Biol. 1993;28(4):259–308. doi: 10.3109/10409239309078437. [DOI] [PubMed] [Google Scholar]
  2. Boles E., Hollenberg C. P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev. 1997 Aug;21(1):85–111. doi: 10.1111/j.1574-6976.1997.tb00346.x. [DOI] [PubMed] [Google Scholar]
  3. Charron M. J., Katz E. B., Olson A. L. GLUT4 gene regulation and manipulation. J Biol Chem. 1999 Feb 5;274(6):3253–3256. doi: 10.1074/jbc.274.6.3253. [DOI] [PubMed] [Google Scholar]
  4. Hebert D. N., Carruthers A. Cholate-solubilized erythrocyte glucose transporters exist as a mixture of homodimers and homotetramers. Biochemistry. 1991 May 14;30(19):4654–4658. doi: 10.1021/bi00233a003. [DOI] [PubMed] [Google Scholar]
  5. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  6. Kruckeberg A. L. The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol. 1996 Nov;166(5):283–292. doi: 10.1007/s002030050385. [DOI] [PubMed] [Google Scholar]
  7. Lewis D. A., Bisson L. F. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol. 1991 Jul;11(7):3804–3813. doi: 10.1128/mcb.11.7.3804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Liang H., Gaber R. F. A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell. 1996 Dec;7(12):1953–1966. doi: 10.1091/mbc.7.12.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
  10. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  11. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  12. Nelissen B., De Wachter R., Goffeau A. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997 Sep;21(2):113–134. doi: 10.1111/j.1574-6976.1997.tb00347.x. [DOI] [PubMed] [Google Scholar]
  13. Ozcan S., Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev. 1999 Sep;63(3):554–569. doi: 10.1128/mmbr.63.3.554-569.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ozcan S., Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol. 1995 Mar;15(3):1564–1572. doi: 10.1128/mcb.15.3.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pessino A., Hebert D. N., Woon C. W., Harrison S. A., Clancy B. M., Buxton J. M., Carruthers A., Czech M. P. Evidence that functional erythrocyte-type glucose transporters are oligomers. J Biol Chem. 1991 Oct 25;266(30):20213–20217. [PubMed] [Google Scholar]
  16. Reifenberger E., Boles E., Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem. 1997 Apr 15;245(2):324–333. doi: 10.1111/j.1432-1033.1997.00324.x. [DOI] [PubMed] [Google Scholar]
  17. Sherwood P. W., Carlson M. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7415–7420. doi: 10.1073/pnas.96.13.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sherwood P. W., Carlson M. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):557–566. doi: 10.1093/genetics/147.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  21. Tu J., Carlson M. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Oct;14(10):6789–6796. doi: 10.1128/mcb.14.10.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zottola R. J., Cloherty E. K., Coderre P. E., Hansen A., Hebert D. N., Carruthers A. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry. 1995 Aug 1;34(30):9734–9747. doi: 10.1021/bi00030a011. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES