Skip to main content
Genetics logoLink to Genetics
. 2000 Jul;155(3):1149–1160. doi: 10.1093/genetics/155.3.1149

RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation.

C J Hanrahan 1, M J Palladino 1, B Ganetzky 1, R A Reenan 1
PMCID: PMC1461140  PMID: 10880477

Abstract

Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs.

Full Text

The Full Text of this article is available as a PDF (261.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass B. L., Nishikura K., Keller W., Seeburg P. H., Emeson R. B., O'Connell M. A., Samuel C. E., Herbert A. A standardized nomenclature for adenosine deaminases that act on RNA. RNA. 1997 Sep;3(9):947–949. [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L. RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci. 1997 May;22(5):157–162. doi: 10.1016/s0968-0004(97)01035-9. [DOI] [PubMed] [Google Scholar]
  3. Bass B. L., Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988 Dec 23;55(6):1089–1098. doi: 10.1016/0092-8674(88)90253-x. [DOI] [PubMed] [Google Scholar]
  4. Benne R. RNA editing. The long and the short of it. Nature. 1996 Apr 4;380(6573):391–392. doi: 10.1038/380391a0. [DOI] [PubMed] [Google Scholar]
  5. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  6. Brusa R., Zimmermann F., Koh D. S., Feldmeyer D., Gass P., Seeburg P. H., Sprengel R. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science. 1995 Dec 8;270(5242):1677–1680. doi: 10.1126/science.270.5242.1677. [DOI] [PubMed] [Google Scholar]
  7. Burns C. M., Chu H., Rueter S. M., Hutchinson L. K., Canton H., Sanders-Bush E., Emeson R. B. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997 May 15;387(6630):303–308. doi: 10.1038/387303a0. [DOI] [PubMed] [Google Scholar]
  8. Casey J. L., Gerin J. L. Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J Virol. 1995 Dec;69(12):7593–7600. doi: 10.1128/jvi.69.12.7593-7600.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egebjerg J., Kukekov V., Heinemann S. F. Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10270–10274. doi: 10.1073/pnas.91.22.10270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haerry T. E., Gehring W. J. A conserved cluster of homeodomain binding sites in the mouse Hoxa-4 intron functions in Drosophila embryos as an enhancer that is directly regulated by Ultrabithorax. Dev Biol. 1997 Jun 1;186(1):1–15. doi: 10.1006/dbio.1997.8582. [DOI] [PubMed] [Google Scholar]
  11. Haerry T. E., Gehring W. J. Intron of the mouse Hoxa-7 gene contains conserved homeodomain binding sites that can function as an enhancer element in Drosophila. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13884–13889. doi: 10.1073/pnas.93.24.13884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauck B., Gehring W. J., Walldorf U. Functional analysis of an eye specific enhancer of the eyeless gene in Drosophila. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):564–569. doi: 10.1073/pnas.96.2.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herb A., Higuchi M., Sprengel R., Seeburg P. H. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1875–1880. doi: 10.1073/pnas.93.5.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higuchi M., Single F. N., Köhler M., Sommer B., Sprengel R., Seeburg P. H. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993 Dec 31;75(7):1361–1370. doi: 10.1016/0092-8674(93)90622-w. [DOI] [PubMed] [Google Scholar]
  15. Hurst S. R., Hough R. F., Aruscavage P. J., Bass B. L. Deamination of mammalian glutamate receptor RNA by Xenopus dsRNA adenosine deaminase: similarities to in vivo RNA editing. RNA. 1995 Dec;1(10):1051–1060. [PMC free article] [PubMed] [Google Scholar]
  16. Keegan L. P., Haerry T. E., Crotty D. A., Packer A. I., Wolgemuth D. J., Gehring W. J. A sequence conserved in vertebrate Hox gene introns functions as an enhancer regulated by posterior homeotic genes in Drosophila imaginal discs. Mech Dev. 1997 May;63(2):145–157. doi: 10.1016/s0925-4773(97)00038-5. [DOI] [PubMed] [Google Scholar]
  17. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  18. Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
  19. Kumar M., Carmichael G. G. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3542–3547. doi: 10.1073/pnas.94.8.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Köhler M., Burnashev N., Sakmann B., Seeburg P. H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993 Mar;10(3):491–500. doi: 10.1016/0896-6273(93)90336-p. [DOI] [PubMed] [Google Scholar]
  21. Lehmann K. A., Bass B. L. The importance of internal loops within RNA substrates of ADAR1. J Mol Biol. 1999 Aug 6;291(1):1–13. doi: 10.1006/jmbi.1999.2914. [DOI] [PubMed] [Google Scholar]
  22. Li M., West J. W., Numann R., Murphy B. J., Scheuer T., Catterall W. A. Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science. 1993 Sep 10;261(5127):1439–1442. doi: 10.1126/science.8396273. [DOI] [PubMed] [Google Scholar]
  23. Lomeli H., Mosbacher J., Melcher T., Höger T., Geiger J. R., Kuner T., Monyer H., Higuchi M., Bach A., Seeburg P. H. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 1994 Dec 9;266(5191):1709–1713. doi: 10.1126/science.7992055. [DOI] [PubMed] [Google Scholar]
  24. Lou L., Bergson C., McGinnis W. Deformed expression in the Drosophila central nervous system is controlled by an autoactivated intronic enhancer. Nucleic Acids Res. 1995 Sep 11;23(17):3481–3487. doi: 10.1093/nar/23.17.3481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maas S., Melcher T., Herb A., Seeburg P. H., Keller W., Krause S., Higuchi M., O'Connell M. A. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem. 1996 May 24;271(21):12221–12226. doi: 10.1074/jbc.271.21.12221. [DOI] [PubMed] [Google Scholar]
  26. Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P. H. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996 Dec 13;271(50):31795–31798. doi: 10.1074/jbc.271.50.31795. [DOI] [PubMed] [Google Scholar]
  27. Melcher T., Maas S., Herb A., Sprengel R., Seeburg P. H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996 Feb 1;379(6564):460–464. doi: 10.1038/379460a0. [DOI] [PubMed] [Google Scholar]
  28. Morse D. P., Bass B. L. Detection of inosine in messenger RNA by inosine-specific cleavage. Biochemistry. 1997 Jul 15;36(28):8429–8434. doi: 10.1021/bi9709607. [DOI] [PubMed] [Google Scholar]
  29. Morse D. P., Bass B. L. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6048–6053. doi: 10.1073/pnas.96.11.6048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murphy B. J., Rogers J., Perdichizzi A. P., Colvin A. A., Catterall W. A. cAMP-dependent phosphorylation of two sites in the alpha subunit of the cardiac sodium channel. J Biol Chem. 1996 Nov 15;271(46):28837–28843. doi: 10.1074/jbc.271.46.28837. [DOI] [PubMed] [Google Scholar]
  31. Nishikura K., Yoo C., Kim U., Murray J. M., Estes P. A., Cash F. E., Liebhaber S. A. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 1991 Nov;10(11):3523–3532. doi: 10.1002/j.1460-2075.1991.tb04916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Dowd D. K., Gee J. R., Smith M. A. Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J Neurosci. 1995 May;15(5 Pt 2):4005–4012. doi: 10.1523/JNEUROSCI.15-05-04005.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patton D. E., Silva T., Bezanilla F. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron. 1997 Sep;19(3):711–722. doi: 10.1016/s0896-6273(00)80383-9. [DOI] [PubMed] [Google Scholar]
  34. Petschek J. P., Scheckelhoff M. R., Mermer M. J., Vaughn J. C. RNA editing and alternative splicing generate mRNA transcript diversity from the Drosophila 4f-rnp locus. Gene. 1997 Dec 19;204(1-2):267–276. doi: 10.1016/s0378-1119(97)00465-4. [DOI] [PubMed] [Google Scholar]
  35. Polson A. G., Bass B. L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 1994 Dec 1;13(23):5701–5711. doi: 10.1002/j.1460-2075.1994.tb06908.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saccomanno L., Bass B. L. A minor fraction of basic fibroblast growth factor mRNA is deaminated in Xenopus stage VI and matured oocytes. RNA. 1999 Jan;5(1):39–48. doi: 10.1017/s1355838299981335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Semenov E. P., Pak W. L. Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem. 1999 Jan;72(1):66–72. doi: 10.1046/j.1471-4159.1999.0720066.x. [DOI] [PubMed] [Google Scholar]
  38. Simpson L., Emeson R. B. RNA editing. Annu Rev Neurosci. 1996;19:27–52. doi: 10.1146/annurev.ne.19.030196.000331. [DOI] [PubMed] [Google Scholar]
  39. Smith L. A., Wang X., Peixoto A. A., Neumann E. K., Hall L. M., Hall J. C. A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci. 1996 Dec 15;16(24):7868–7879. doi: 10.1523/JNEUROSCI.16-24-07868.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith R. D., Goldin A. L. Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J Neurosci. 1997 Aug 15;17(16):6086–6093. doi: 10.1523/JNEUROSCI.17-16-06086.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith R. D., Goldin A. L. Phosphorylation of brain sodium channels in the I--II linker modulates channel function in Xenopus oocytes. J Neurosci. 1996 Mar 15;16(6):1965–1974. doi: 10.1523/JNEUROSCI.16-06-01965.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thackeray J. R., Ganetzky B. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics. 1995 Sep;141(1):203–214. doi: 10.1093/genetics/141.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wagner R. W., Smith J. E., Cooperman B. S., Nishikura K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2647–2651. doi: 10.1073/pnas.86.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES