Skip to main content
Genetics logoLink to Genetics
. 2000 Jul;155(3):1185–1194. doi: 10.1093/genetics/155.3.1185

Joint effects of natural selection and recombination on gene flow between Drosophila ananassae populations.

Y Chen 1, B J Marsh 1, W Stephan 1
PMCID: PMC1461142  PMID: 10880480

Abstract

We estimated DNA sequence variation in a 5.7-kb fragment of the furrowed (fw) gene region within and between four populations of Drosophila ananassae; fw is located in a chromosomal region of very low recombination. We analyzed gene flow between these four populations along a latitudinal transect on the Indian subcontinent: two populations from southern, subtropical areas (Hyderabad, India, and Sri Lanka) and two from more temperate zones in the north (Nepal and Burma). Furthermore, we compared the pattern of differentiation at fw with published data from Om(1D), a gene located in a region of normal recombination. While differentiation at Om(1D) shows an isolation-by-distance effect, at fw the pattern of differentiation is quite different such that the frequencies of single nucleotide polymorphisms are homogenized over extended geographic regions (i.e., among the two populations of the northern species range from Burma and Nepal as well as among the two southern populations from India and Sri Lanka), but strongly differentiated between the northern and southern populations. To examine these differences in the patterns of variation and differentiation between the Om(1D) and fw gene regions, we determine the critical values of our previously proposed test of the background selection hypothesis (henceforth called F(ST) test). Using these results, we show that the pattern of differentiation at fw may be inconsistent with the background selection model. The data depart from this model in a direction that is compatible with the occurrence of recent selective sweeps in the northern as well as southern populations.

Full Text

The Full Text of this article is available as a PDF (125.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
  3. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  4. Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. doi: 10.1017/s0016672300034029. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B. Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol. 1998 May;15(5):538–543. doi: 10.1093/oxfordjournals.molbev.a025953. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
  9. Fu Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics. 1996 May;143(1):557–570. doi: 10.1093/genetics/143.1.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hudson R. R., Kaplan N. L. Deleterious background selection with recombination. Genetics. 1995 Dec;141(4):1605–1617. doi: 10.1093/genetics/141.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leshko-Lindsay L. A., Corces V. G. The role of selectins in Drosophila eye and bristle development. Development. 1997 Jan;124(1):169–180. doi: 10.1242/dev.124.1.169. [DOI] [PubMed] [Google Scholar]
  17. Lindsley D. L., Sandler L. The genetic analysis of meiosis in female Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):295–312. doi: 10.1098/rstb.1977.0019. [DOI] [PubMed] [Google Scholar]
  18. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
  20. Schug M. D., Mackay T. F., Aquadro C. F. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet. 1997 Jan;15(1):99–102. doi: 10.1038/ng0197-99. [DOI] [PubMed] [Google Scholar]
  21. Slatkin M., Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res. 1998 Apr;71(2):155–160. doi: 10.1017/s001667239800319x. [DOI] [PubMed] [Google Scholar]
  22. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  23. Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stephan W., Mitchell S. J. Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region of Drosophila ananassae. Genetics. 1992 Dec;132(4):1039–1045. doi: 10.1093/genetics/132.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stephan W., Xing L., Kirby D. A., Braverman J. M. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5649–5654. doi: 10.1073/pnas.95.10.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  28. Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES