Skip to main content
Genetics logoLink to Genetics
. 2000 Jul;155(3):1281–1295. doi: 10.1093/genetics/155.3.1281

kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila.

G Roman 1, J He 1, R L Davis 1
PMCID: PMC1461172  PMID: 10880488

Abstract

The kurtz gene encodes a novel nonvisual arrestin. krz is located at the most-distal end of the chromosome 3R, the third gene in from the telomere. krz is expressed throughout development. During early embryogenesis, krz is expressed ubiquitously and later is localized to the central nervous system, maxillary cirri, and antennal sensory organs. In late third instar larvae, krz message is detected in the fat bodies, the ventral portion of the thoracic-abdominal ganglia, the deuterocerebrum, the eye-antennal imaginal disc, and the wing imaginal disc. The krz(1) mutation contains a P-element insertion within the only intron of this gene and results in a severe reduction of function. Mutations in krz have a broad lethal phase extending from late embryogenesis to the third larval instar. The fat bodies of krz(1) larva precociously dissociate during the midthird instar. krz(1) is a type 1 melanotic tumor gene; the fat body is the primary site of melanotic tumor formation during the third instar. We have functionally rescued these phenotypes with both genomic and cDNA transgenes. Importantly, the expression of a full-length krz cDNA within the CNS rescues the krz(1) lethality. These experiments establish the krz nonvisual arrestin as an essential neural gene in Drosophila.

Full Text

The Full Text of this article is available as a PDF (450.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre E., Graba Y., Fasano L., Gallet A., Perrin L., De Zulueta P., Pradel J., Kerridge S., Jacq B. The Drosophila teashirt homeotic protein is a DNA-binding protein and modulo, a HOM-C regulated modifier of variegation, is a likely candidate for being a direct target gene. Mech Dev. 1996 Oct;59(2):191–204. doi: 10.1016/0925-4773(96)00594-1. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Attramadal H., Arriza J. L., Aoki C., Dawson T. M., Codina J., Kwatra M. M., Snyder S. H., Caron M. G., Lefkowitz R. J. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem. 1992 Sep 5;267(25):17882–17890. [PubMed] [Google Scholar]
  4. BUTTERWORTH F. M., BODENSTEIN D., KING R. C. ADIPOSE TISSUE OF DROSOPHILA MELANOGASTER. I. AN EXPERIMENTAL STUDY OF LARVAL FAT BODY. J Exp Zool. 1965 Mar;158:141–153. doi: 10.1002/jez.1401580203. [DOI] [PubMed] [Google Scholar]
  5. Benovic J. L., DeBlasi A., Stone W. C., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptor kinase: primary structure delineates a multigene family. Science. 1989 Oct 13;246(4927):235–240. doi: 10.1126/science.2552582. [DOI] [PubMed] [Google Scholar]
  6. Benovic J. L., Staniszewski C., Mayor F., Jr, Caron M. G., Lefkowitz R. J. beta-Adrenergic receptor kinase. Activity of partial agonists for stimulation of adenylate cyclase correlates with ability to promote receptor phosphorylation. J Biol Chem. 1988 Mar 15;263(8):3893–3897. [PubMed] [Google Scholar]
  7. Benovic J. L., Strasser R. H., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):2797–2801. doi: 10.1073/pnas.83.9.2797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bentrop J., Plangger A., Paulsen R. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase. Eur J Biochem. 1993 Aug 15;216(1):67–73. doi: 10.1111/j.1432-1033.1993.tb18117.x. [DOI] [PubMed] [Google Scholar]
  9. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  10. Butterworth F. M. Adipose tissue of Drosophila melanogaster. V. Genetic and experimental studies of an extrinsic influence on the rate of cell death in the larval fat body. Dev Biol. 1972 Jun;28(2):311–325. doi: 10.1016/0012-1606(72)90016-4. [DOI] [PubMed] [Google Scholar]
  11. Casso D., Ramírez-Weber F. A., Kornberg T. B. GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech Dev. 1999 Nov;88(2):229–232. doi: 10.1016/s0925-4773(99)00174-4. [DOI] [PubMed] [Google Scholar]
  12. Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S., DiNardo S., Wasserman S. A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993 Oct;135(2):489–505. doi: 10.1093/genetics/135.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Conner D. A., Mathier M. A., Mortensen R. M., Christe M., Vatner S. F., Seidman C. E., Seidman J. G. beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res. 1997 Dec;81(6):1021–1026. doi: 10.1161/01.res.81.6.1021. [DOI] [PubMed] [Google Scholar]
  14. Craft C. M., Whitmore D. H. The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett. 1995 Apr 3;362(2):247–255. doi: 10.1016/0014-5793(95)00213-s. [DOI] [PubMed] [Google Scholar]
  15. Daaka Y., Luttrell L. M., Ahn S., Della Rocca G. J., Ferguson S. S., Caron M. G., Lefkowitz R. J. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem. 1998 Jan 9;273(2):685–688. doi: 10.1074/jbc.273.2.685. [DOI] [PubMed] [Google Scholar]
  16. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deák P., Omar M. M., Saunders R. D., Pál M., Komonyi O., Szidonya J., Maróy P., Zhang Y., Ashburner M., Benos P. P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: correlation of physical and cytogenetic maps in chromosomal region 86E-87F. Genetics. 1997 Dec;147(4):1697–1722. doi: 10.1093/genetics/147.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ferguson S. S., Barak L. S., Zhang J., Caron M. G. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol. 1996 Oct;74(10):1095–1110. doi: 10.1139/cjpp-74-10-1095. [DOI] [PubMed] [Google Scholar]
  19. Ferguson S. S., Caron M. G. G protein-coupled receptor adaptation mechanisms. Semin Cell Dev Biol. 1998 Apr;9(2):119–127. doi: 10.1006/scdb.1997.0216. [DOI] [PubMed] [Google Scholar]
  20. Ferguson S. S., Zhang J., Barak L. S., Caron M. G. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci. 1998;62(17-18):1561–1565. doi: 10.1016/s0024-3205(98)00107-6. [DOI] [PubMed] [Google Scholar]
  21. Fischer-Vize J. A., Rubin G. M., Lehmann R. The fat facets gene is required for Drosophila eye and embryo development. Development. 1992 Dec;116(4):985–1000. doi: 10.1242/dev.116.4.985. [DOI] [PubMed] [Google Scholar]
  22. Gaidarov I., Krupnick J. G., Falck J. R., Benovic J. L., Keen J. H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 1999 Feb 15;18(4):871–881. doi: 10.1093/emboj/18.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Garzino V., Pereira A., Laurenti P., Graba Y., Levis R. W., Le Parco Y., Pradel J. Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J. 1992 Dec;11(12):4471–4479. doi: 10.1002/j.1460-2075.1992.tb05548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goodman O. B., Jr, Krupnick J. G., Gurevich V. V., Benovic J. L., Keen J. H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem. 1997 Jun 6;272(23):15017–15022. doi: 10.1074/jbc.272.23.15017. [DOI] [PubMed] [Google Scholar]
  25. Goodman O. B., Jr, Krupnick J. G., Santini F., Gurevich V. V., Penn R. B., Gagnon A. W., Keen J. H., Benovic J. L. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996 Oct 3;383(6599):447–450. doi: 10.1038/383447a0. [DOI] [PubMed] [Google Scholar]
  26. Gurevich V. V., Dion S. B., Onorato J. J., Ptasienski J., Kim C. M., Sterne-Marr R., Hosey M. M., Benovic J. L. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem. 1995 Jan 13;270(2):720–731. doi: 10.1074/jbc.270.2.720. [DOI] [PubMed] [Google Scholar]
  27. Hartl D. L., Nurminsky D. I., Jones R. W., Lozovskaya E. R. Genome structure and evolution in Drosophila: applications of the framework P1 map. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6824–6829. doi: 10.1073/pnas.91.15.6824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoshizaki D. K. Krüppel expression during postembryonic development of Drosophila. Dev Biol. 1994 May;163(1):133–140. doi: 10.1006/dbio.1994.1129. [DOI] [PubMed] [Google Scholar]
  29. Hyde D. R., Mecklenburg K. L., Pollock J. A., Vihtelic T. S., Benzer S. Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1008–1012. doi: 10.1073/pnas.87.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krejci E., Garzino V., Mary C., Bennani N., Pradel J. Modulo, a new maternally expressed Drosophila gene encodes a DNA-binding protein with distinct acidic and basic regions. Nucleic Acids Res. 1989 Oct 25;17(20):8101–8115. doi: 10.1093/nar/17.20.8101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Krishnan R., Ganguly R. Nucleotide sequence of the arrestin-like 49 Kd protein gene of Drosophila miranda. Nucleic Acids Res. 1990 Oct 11;18(19):5894–5894. doi: 10.1093/nar/18.19.5894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Krupnick J. G., Goodman O. B., Jr, Keen J. H., Benovic J. L. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem. 1997 Jun 6;272(23):15011–15016. doi: 10.1074/jbc.272.23.15011. [DOI] [PubMed] [Google Scholar]
  33. Laporte S. A., Oakley R. H., Zhang J., Holt J. A., Ferguson S. S., Caron M. G., Barak L. S. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3712–3717. doi: 10.1073/pnas.96.7.3712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Laurenti P., Graba Y., Rosset R., Pradel J. Genetic and molecular analysis of terminal deletions of chromosome 3R of Drosophila melanogaster. Gene. 1995 Mar 10;154(2):177–181. doi: 10.1016/0378-1119(94)00831-c. [DOI] [PubMed] [Google Scholar]
  35. LeVine H., 3rd, Smith D. P., Whitney M., Malicki D. M., Dolph P. J., Smith G. F., Burkhart W., Zuker C. S. Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation. Mech Dev. 1990 Dec;33(1):19–25. doi: 10.1016/0925-4773(90)90131-5. [DOI] [PubMed] [Google Scholar]
  36. Levis R. W., Ganesan R., Houtchens K., Tolar L. A., Sheen F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. doi: 10.1016/0092-8674(93)90318-k. [DOI] [PubMed] [Google Scholar]
  37. Lieb W. E., Smith-Lang L., Dua H. S., Christensen A. C., Donoso L. A. Identification of an S-antigen-like molecule in Drosophila melanogaster: an immunohistochemical study. Exp Eye Res. 1991 Aug;53(2):171–178. doi: 10.1016/0014-4835(91)90071-l. [DOI] [PubMed] [Google Scholar]
  38. Lin D. M., Goodman C. S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron. 1994 Sep;13(3):507–523. doi: 10.1016/0896-6273(94)90022-1. [DOI] [PubMed] [Google Scholar]
  39. Lohse M. J., Andexinger S., Pitcher J., Trukawinski S., Codina J., Faure J. P., Caron M. G., Lefkowitz R. J. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem. 1992 Apr 25;267(12):8558–8564. [PubMed] [Google Scholar]
  40. Lohse M. J., Benovic J. L., Codina J., Caron M. G., Lefkowitz R. J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990 Jun 22;248(4962):1547–1550. doi: 10.1126/science.2163110. [DOI] [PubMed] [Google Scholar]
  41. Luttrell L. M., Ferguson S. S., Daaka Y., Miller W. E., Maudsley S., Della Rocca G. J., Lin F., Kawakatsu H., Owada K., Luttrell D. K. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999 Jan 29;283(5402):655–661. doi: 10.1126/science.283.5402.655. [DOI] [PubMed] [Google Scholar]
  42. Meller V. H., Wu K. H., Roman G., Kuroda M. I., Davis R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell. 1997 Feb 21;88(4):445–457. doi: 10.1016/s0092-8674(00)81885-1. [DOI] [PubMed] [Google Scholar]
  43. Parruti G., Ambrosini G., Sallese M., De Blasi A. Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2. Biochem Biophys Res Commun. 1993 Jan 29;190(2):475–481. doi: 10.1006/bbrc.1993.1072. [DOI] [PubMed] [Google Scholar]
  44. Parruti G., Peracchia F., Sallese M., Ambrosini G., Masini M., Rotilio D., De Blasi A. Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J Biol Chem. 1993 May 5;268(13):9753–9761. [PubMed] [Google Scholar]
  45. Perrin L., Demakova O., Fanti L., Kallenbach S., Saingery S., Mal'ceva N. I., Pimpinelli S., Zhimulev I., Pradel J. Dynamics of the sub-nuclear distribution of Modulo and the regulation of position-effect variegation by nucleolus in Drosophila. J Cell Sci. 1998 Sep;111(Pt 18):2753–2761. doi: 10.1242/jcs.111.18.2753. [DOI] [PubMed] [Google Scholar]
  46. Perrin L., Romby P., Laurenti P., Bérenger H., Kallenbach S., Bourbon H. M., Pradel J. The Drosophila modifier of variegation modulo gene product binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. J Biol Chem. 1999 Mar 5;274(10):6315–6323. doi: 10.1074/jbc.274.10.6315. [DOI] [PubMed] [Google Scholar]
  47. Pitcher J. A., Payne E. S., Csortos C., DePaoli-Roach A. A., Lefkowitz R. J. The G-protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8343–8347. doi: 10.1073/pnas.92.18.8343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. RIZKI M. T. Melanotic tumor ormation in Drosophila. J Morphol. 1960 Mar;106:147–157. doi: 10.1002/jmor.1051060203. [DOI] [PubMed] [Google Scholar]
  49. RIZKI M. T. Melanotic tumor ormation in Drosophila. J Morphol. 1960 Mar;106:147–157. doi: 10.1002/jmor.1051060203. [DOI] [PubMed] [Google Scholar]
  50. Raming K., Freitag J., Krieger J., Breer H. Arrestin-subtypes in insect antennae. Cell Signal. 1993 Jan;5(1):69–80. doi: 10.1016/0898-6568(93)90009-b. [DOI] [PubMed] [Google Scholar]
  51. Rizki R. M., Rizki T. M. Basement membrane abnormalities in melanotic tumor formation of Drosophila. Experientia. 1974 May 15;30(5):543–546. doi: 10.1007/BF01926343. [DOI] [PubMed] [Google Scholar]
  52. Rizki T. M., Rizki R. M. Genetics of tumor-W in Drosophila melanogaster: mapping a gene with incomplete penetrance. J Hered. 1981 Mar-Apr;72(2):78–80. doi: 10.1093/oxfordjournals.jhered.a109457. [DOI] [PubMed] [Google Scholar]
  53. Roman G., Meller V., Wu K. H., Davis R. L. The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter. Am J Physiol. 1998 Sep;275(3 Pt 1):C857–C869. doi: 10.1152/ajpcell.1998.275.3.C857. [DOI] [PubMed] [Google Scholar]
  54. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sterne-Marr R., Gurevich V. V., Goldsmith P., Bodine R. C., Sanders C., Donoso L. A., Benovic J. L. Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem. 1993 Jul 25;268(21):15640–15648. [PubMed] [Google Scholar]
  56. Söhlemann P., Hekman M., Puzicha M., Buchen C., Lohse M. J. Binding of purified recombinant beta-arrestin to guanine-nucleotide-binding-protein-coupled receptors. Eur J Biochem. 1995 Sep 1;232(2):464–472. [PubMed] [Google Scholar]
  57. Watson K. L., Johnson T. K., Denell R. E. Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev Genet. 1991;12(3):173–187. doi: 10.1002/dvg.1020120302. [DOI] [PubMed] [Google Scholar]
  58. Zhang J., Ferguson S. S., Barak L. S., Aber M. J., Giros B., Lefkowitz R. J., Caron M. G. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels. 1997;5(3-4):193–199. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES