Skip to main content
Genetics logoLink to Genetics
. 2000 Aug;155(4):1683–1692. doi: 10.1093/genetics/155.4.1683

Nonrandom spatial distribution of synonymous substitutions in the GP63 gene from Leishmania.

F Alvarez-Valin 1, J F Tort 1, G Bernardi 1
PMCID: PMC1461213  PMID: 10924466

Abstract

In this work we analyze the variability in substitution rates in the GP63 gene from Leishmania. By using a sliding window to estimate substitution rates along the gene, we found that the rate of synonymous substitutions along the GP63 gene is highly correlated with both the rate of amino acid substitution and codon bias. Furthermore, we show that comparisons involving genes that represent independent phylogenetic lines yield very similar divergence/conservation patterns, thus suggesting that deterministic forces (i.e., nonstochastic forces such as selection) generated these patterns. We present evidence indicating that the variability in substitution rates is unambiguously related to functionally relevant features. In particular, there is a clear relationship between rates and the tertiary structure of the encoded protein since all divergent segments are located on the surface of the molecule and facing one side (almost parallel to the cell membrane) on the exposed surface of the organism. Remarkably, the protein segments encoded by these variable regions encircle the active site in a funnel-like distribution. These results strongly suggest that the pattern of nucleotide divergence and, notably, of synonymous divergence is affected by functional constraints.

Full Text

The Full Text of this article is available as a PDF (202.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. doi: 10.1093/genetics/136.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez-Valin F., Jabbari K., Bernardi G. Synonymous and nonsynonymous substitutions in mammalian genes: intragenic correlations. J Mol Evol. 1998 Jan;46(1):37–44. doi: 10.1007/pl00006281. [DOI] [PubMed] [Google Scholar]
  3. Alvarez-Valin F., Jabbari K., Carels N., Bernardi G. Synonymous and nonsynonymous substitutions in genes from Gramineae: intragenic correlations. J Mol Evol. 1999 Sep;49(3):330–342. doi: 10.1007/pl00006556. [DOI] [PubMed] [Google Scholar]
  4. Alvarez F., Robello C., Vignali M. Evolution of codon usage and base contents in kinetoplastid protozoans. Mol Biol Evol. 1994 Sep;11(5):790–802. doi: 10.1093/oxfordjournals.molbev.a040159. [DOI] [PubMed] [Google Scholar]
  5. Bennetzen J. L., Hall B. D. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed] [Google Scholar]
  6. Bernardi G., Mouchiroud D., Gautier C. Silent substitutions in mammalian genomes and their evolutionary implications. J Mol Evol. 1993 Dec;37(6):583–589. doi: 10.1007/BF00182744. [DOI] [PubMed] [Google Scholar]
  7. Button L. L., Russell D. G., Klein H. L., Medina-Acosta E., Karess R. E., McMaster W. R. Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):271–283. doi: 10.1016/0166-6851(89)90076-5. [DOI] [PubMed] [Google Scholar]
  8. Chaudhuri G., Chaudhuri M., Pan A., Chang K. P. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem. 1989 May 5;264(13):7483–7489. [PubMed] [Google Scholar]
  9. Chiusano M. L., D'Onofrio G., Alvarez-Valin F., Jabbari K., Colonna G., Bernardi G. Correlations of nucleotide substitution rates and base composition of mammalian coding sequences with protein structure. Gene. 1999 Sep 30;238(1):23–31. doi: 10.1016/s0378-1119(99)00258-9. [DOI] [PubMed] [Google Scholar]
  10. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Comeron J. M. A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol. 1995 Dec;41(6):1152–1159. doi: 10.1007/BF00173196. [DOI] [PubMed] [Google Scholar]
  12. Comeron J. M., Aguadé M. Synonymous substitutions in the Xdh gene of Drosophila: heterogeneous distribution along the coding region. Genetics. 1996 Nov;144(3):1053–1062. doi: 10.1093/genetics/144.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Comeron J. M., Kreitman M. The correlation between synonymous and nonsynonymous substitutions in Drosophila: mutation, selection or relaxed constraints? Genetics. 1998 Oct;150(2):767–775. doi: 10.1093/genetics/150.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Creighton T. E., Darby N. J. Functional evolutionary divergence of proteolytic enzymes and their inhibitors. Trends Biochem Sci. 1989 Aug;14(8):319–324. doi: 10.1016/0968-0004(89)90159-x. [DOI] [PubMed] [Google Scholar]
  15. Eickbush T. H., Burke W. D. The silkmoth late chorion locus. II. Gradients of gene conversion in two paired multigene families. J Mol Biol. 1986 Aug 5;190(3):357–366. doi: 10.1016/0022-2836(86)90007-0. [DOI] [PubMed] [Google Scholar]
  16. Fitch W. M. Estimating the total number of nucleotide substitutions since the common ancestor of a pair of homologous genes: comparison of several methods and three beta hemoglobin messenger RNA's. J Mol Evol. 1980 Dec;16(3-4):153–209. doi: 10.1007/BF01804976. [DOI] [PubMed] [Google Scholar]
  17. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
  19. Hughes A. L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994 May 23;256(1346):119–124. doi: 10.1098/rspb.1994.0058. [DOI] [PubMed] [Google Scholar]
  20. Hughes A. L., Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415–435. doi: 10.1146/annurev.genet.32.1.415. [DOI] [PubMed] [Google Scholar]
  21. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981 Feb 15;146(1):1–21. doi: 10.1016/0022-2836(81)90363-6. [DOI] [PubMed] [Google Scholar]
  22. Jackson J. A., Fink G. R. Gene conversion between duplicated genetic elements in yeast. Nature. 1981 Jul 23;292(5821):306–311. doi: 10.1038/292306a0. [DOI] [PubMed] [Google Scholar]
  23. Kimura M., Ohta T. Mutation and evolution at the molecular level. Genetics. 1973 Apr;73(Suppl):19–35. [PubMed] [Google Scholar]
  24. Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
  25. Lipman D. J., Wilbur W. J. Interaction of silent and replacement changes in eukaryotic coding sequences. J Mol Evol. 1984;21(2):161–167. doi: 10.1007/BF02100090. [DOI] [PubMed] [Google Scholar]
  26. Macdonald M. H., Morrison C. J., McMaster W. R. Analysis of the active site and activation mechanism of the Leishmania surface metalloproteinase GP63. Biochim Biophys Acta. 1995 Dec 6;1253(2):199–207. doi: 10.1016/0167-4838(95)00155-5. [DOI] [PubMed] [Google Scholar]
  27. Morales G., Carrillo G., Requena J. M., Guzman F., Gomez L. C., Patarroyo M. E., Alonso C. Mapping of the antigenic determinants of the Leishmania infantum gp63 protein recognized by antibodies elicited during canine visceral leishmaniasis. Parasitology. 1997 Jun;114(Pt 6):507–516. [PubMed] [Google Scholar]
  28. Moriyama E. N., Gojobori T. Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics. 1992 Apr;130(4):855–864. doi: 10.1093/genetics/130.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohta T., Ina Y. Variation in synonymous substitution rates among mammalian genes and the correlation between synonymous and nonsynonymous divergences. J Mol Evol. 1995 Dec;41(6):717–720. doi: 10.1007/BF00173150. [DOI] [PubMed] [Google Scholar]
  30. Precup J., Parker J. Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem. 1987 Aug 15;262(23):11351–11355. [PubMed] [Google Scholar]
  31. Puentes F., Guzmán F., Marín V., Alonso C., Patarroyo M. E., Moreno A. Leishmania: fine mapping of the Leishmanolysin molecule's conserved core domains involved in binding and internalization. Exp Parasitol. 1999 Sep;93(1):7–22. doi: 10.1006/expr.1999.4427. [DOI] [PubMed] [Google Scholar]
  32. Roberts S. C., Swihart K. G., Agey M. W., Ramamoorthy R., Wilson M. E., Donelson J. E. Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Mol Biochem Parasitol. 1993 Dec;62(2):157–171. doi: 10.1016/0166-6851(93)90106-8. [DOI] [PubMed] [Google Scholar]
  33. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  34. Russo D. M., Jardim A., Carvalho E. M., Sleath P. R., Armitage R. J., Olafson R. W., Reed S. G. Mapping human T cell epitopes in leishmania gp63. Identification of cross-reactive and species-specific epitopes. J Immunol. 1993 Feb 1;150(3):932–939. [PubMed] [Google Scholar]
  35. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  36. Schlagenhauf E., Etges R., Metcalf P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Structure. 1998 Aug 15;6(8):1035–1046. doi: 10.1016/s0969-2126(98)00104-x. [DOI] [PubMed] [Google Scholar]
  37. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  38. Sharp P. M., Li W. H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sharp P. M., Li W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. doi: 10.1093/oxfordjournals.molbev.a040443. [DOI] [PubMed] [Google Scholar]
  40. Smith N. G., Hurst L. D. Molecular evolution of an imprinted gene: repeatability of patterns of evolution within the mammalian insulin-like growth factor type II receptor. Genetics. 1998 Oct;150(2):823–833. doi: 10.1093/genetics/150.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Soares L. R., Sercarz E. E., Miller A. Vaccination of the Leishmania major susceptible BALB/c mouse. I. The precise selection of peptide determinant influences CD4+ T cell subset expression. Int Immunol. 1994 May;6(5):785–794. doi: 10.1093/intimm/6.5.785. [DOI] [PubMed] [Google Scholar]
  42. Soteriadou K. P., Remoundos M. S., Katsikas M. C., Tzinia A. K., Tsikaris V., Sakarellos C., Tzartos S. J. The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem. 1992 Jul 15;267(20):13980–13985. [PubMed] [Google Scholar]
  43. Steinkraus H. B., Greer J. M., Stephenson D. C., Langer P. J. Sequence heterogeneity and polymorphic gene arrangements of the Leishmania guyanensis gp63 genes. Mol Biochem Parasitol. 1993 Dec;62(2):173–185. doi: 10.1016/0166-6851(93)90107-9. [DOI] [PubMed] [Google Scholar]
  44. Stenico M., Lloyd A. T., Sharp P. M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994 Jul 11;22(13):2437–2446. doi: 10.1093/nar/22.13.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tanaka T., Nei M. Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol. 1989 Sep;6(5):447–459. doi: 10.1093/oxfordjournals.molbev.a040569. [DOI] [PubMed] [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Webb J. R., Button L. L., McMaster W. R. Heterogeneity of the genes encoding the major surface glycoprotein of Leishmania donovani. Mol Biochem Parasitol. 1991 Oct;48(2):173–184. doi: 10.1016/0166-6851(91)90113-k. [DOI] [PubMed] [Google Scholar]
  48. Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]
  49. Wolfe K. H., Sharp P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol. 1993 Oct;37(4):441–456. doi: 10.1007/BF00178874. [DOI] [PubMed] [Google Scholar]
  50. Zanotto P. M., Kallas E. G., de Souza R. F., Holmes E. C. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics. 1999 Nov;153(3):1077–1089. doi: 10.1093/genetics/153.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhang J., Rosenberg H. F., Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708–3713. doi: 10.1073/pnas.95.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zoubak S., D'Onofrio G., Cacciò S., Bernardi G., Bernardi G. Specific compositional patterns of synonymous positions in homologous mammalian genes. J Mol Evol. 1995 Mar;40(3):293–307. doi: 10.1007/BF00163234. [DOI] [PubMed] [Google Scholar]
  53. de Miranda A. B., Alvarez-Valin F., Jabbari K., Degrave W. M., Bernardi G. Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae. J Mol Evol. 2000 Jan;50(1):45–55. doi: 10.1007/s002399910006. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES