Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):257–268. doi: 10.1093/genetics/156.1.257

A genome-wide departure from the standard neutral model in natural populations of Drosophila.

P Andolfatto 1, M Przeworski 1
PMCID: PMC1461228  PMID: 10978290

Abstract

We analyze nucleotide polymorphism data for a large number of loci in areas of normal to high recombination in Drosophila melanogaster and D. simulans (24 and 16 loci, respectively). We find a genome-wide, systematic departure from the neutral expectation for a panmictic population at equilibrium in natural populations of both species. The distribution of sequence-based estimates of 2Nc across loci is inconsistent with the assumptions of the standard neutral theory, given the observed levels of nucleotide diversity and accepted values for recombination and mutation rates. Under these assumptions, most estimates of 2Nc are severalfold too low; in other words, both species exhibit greater intralocus linkage disequilibrium than expected. Variation in recombination or mutation rates is not sufficient to account for the excess of linkage disequilibrium. While an equilibrium island model does not seem to account for the data, more complicated forms of population structure may. A proper test of alternative demographic models will require loci to be sampled in a more consistent fashion.

Full Text

The Full Text of this article is available as a PDF (257.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andolfatto P., Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics. 2000 Apr;154(4):1681–1691. doi: 10.1093/genetics/154.4.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andolfatto P., Nordborg M. The effect of gene conversion on intralocus associations. Genetics. 1998 Mar;148(3):1397–1399. doi: 10.1093/genetics/148.3.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ayala F. J., Chang B. S., Hartl D. L. Molecular evolution of the Rh3 gene in Drosophila. Genetica. 1993;92(1):23–32. doi: 10.1007/BF00057504. [DOI] [PubMed] [Google Scholar]
  6. Ayala F. J., Hartl D. L. Molecular drift of the bride of sevenless (boss) gene in Drosophila. Mol Biol Evol. 1993 Sep;10(5):1030–1040. doi: 10.1093/oxfordjournals.molbev.a040052. [DOI] [PubMed] [Google Scholar]
  7. Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
  8. Begun D. J., Aquadro C. F. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. doi: 10.1093/genetics/136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  10. Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brooks L. D., Marks R. W. The organization of genetic variation for recombination in Drosophila melanogaster. Genetics. 1986 Oct;114(2):525–547. doi: 10.1093/genetics/114.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. doi: 10.1017/s0016672300034029. [DOI] [PubMed] [Google Scholar]
  14. Charlesworth D., Charlesworth B., Morgan M. T. The pattern of neutral molecular variation under the background selection model. Genetics. 1995 Dec;141(4):1619–1632. doi: 10.1093/genetics/141.4.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chovnick A. Gene conversion and transfer of genetic information within the inverted region of inversion heterozygotes. Genetics. 1973 Sep;75(1):123–131. doi: 10.1093/genetics/75.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cirera S., Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. doi: 10.1093/genetics/147.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clark A. G., Wang L. Molecular population genetics of Drosophila immune system genes. Genetics. 1997 Oct;147(2):713–724. doi: 10.1093/genetics/147.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cooke P. H., Oakeshott J. G. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1426–1430. doi: 10.1073/pnas.86.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. David J. R., Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 1988 Apr;4(4):106–111. doi: 10.1016/0168-9525(88)90098-4. [DOI] [PubMed] [Google Scholar]
  21. Dooner H. K., Martínez-Férez I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gillespie J. H. Junk ain't what junk does: neutral alleles in a selected context. Gene. 1997 Dec 31;205(1-2):291–299. doi: 10.1016/s0378-1119(97)00470-8. [DOI] [PubMed] [Google Scholar]
  23. Goss P. J., Lewontin R. C. Detecting heterogeneity of substitution along DNA and protein sequences. Genetics. 1996 May;143(1):589–602. doi: 10.1093/genetics/143.1.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Griffiths R. C., Marjoram P. Ancestral inference from samples of DNA sequences with recombination. J Comput Biol. 1996 Winter;3(4):479–502. doi: 10.1089/cmb.1996.3.479. [DOI] [PubMed] [Google Scholar]
  25. Hale L. R., Singh R. S. Mitochondrial DNA variation and genetic structure in populations of Drosophila melanogaster. Mol Biol Evol. 1987 Nov;4(6):622–637. doi: 10.1093/oxfordjournals.molbev.a040466. [DOI] [PubMed] [Google Scholar]
  26. Hamblin M. T., Aquadro C. F. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. doi: 10.1093/genetics/145.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hamblin M. T., Aquadro C. F. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. doi: 10.1093/genetics/145.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Harada K., Kusakabe S., Yamazaki T., Mukai T. Spontaneous mutation rates in null and band-morph mutations of enzyme loci in Drosophila melanogaster. Jpn J Genet. 1993 Dec;68(6):605–616. doi: 10.1266/jjg.68.605. [DOI] [PubMed] [Google Scholar]
  29. Hasson E., Eanes W. F. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster. Genetics. 1996 Dec;144(4):1565–1575. doi: 10.1093/genetics/144.4.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hasson E., Wang I. N., Zeng L. W., Kreitman M., Eanes W. F. Nucleotide variation in the triosephosphate isomerase (Tpi) locus of Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1998 Jun;15(6):756–769. doi: 10.1093/oxfordjournals.molbev.a025979. [DOI] [PubMed] [Google Scholar]
  31. Hey J., Kliman R. M. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol. 1993 Jul;10(4):804–822. doi: 10.1093/oxfordjournals.molbev.a040044. [DOI] [PubMed] [Google Scholar]
  32. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
  35. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  36. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Hudson R. R., Sáez A. G., Ayala F. J. DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7725–7729. doi: 10.1073/pnas.94.15.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Inomata N., Shibata H., Okuyama E., Yamazaki T. Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics. 1995 Sep;141(1):237–244. doi: 10.1093/genetics/141.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Irvin S. D., Wetterstrand K. A., Hutter C. M., Aquadro C. F. Genetic variation and differentiation at microsatellite loci in Drosophila simulans. Evidence for founder effects in new world populations. Genetics. 1998 Oct;150(2):777–790. doi: 10.1093/genetics/150.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Jeffreys A. J., Barber R., Bois P., Buard J., Dubrova Y. E., Grant G., Hollies C. R., May C. A., Neumann R., Panayi M. Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis. 1999 Jun;20(8):1665–1675. doi: 10.1002/(SICI)1522-2683(19990101)20:8<1665::AID-ELPS1665>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  41. Kambysellis M. P., Ho K. F., Craddock E. M., Piano F., Parisi M., Cohen J. Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Curr Biol. 1995 Oct 1;5(10):1129–1139. doi: 10.1016/s0960-9822(95)00229-6. [DOI] [PubMed] [Google Scholar]
  42. Karotam J., Delves A. C., Oakeshott J. G. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. doi: 10.1007/BF02424448. [DOI] [PubMed] [Google Scholar]
  43. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kirby D. A., Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. doi: 10.1093/genetics/141.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kirby D. A., Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics. 1996 Oct;144(2):635–645. doi: 10.1093/genetics/144.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kliman R. M., Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. doi: 10.1093/genetics/133.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  49. Labate J. A., Biermann C. H., Eanes W. F. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1999 Jun;16(6):724–731. doi: 10.1093/oxfordjournals.molbev.a026157. [DOI] [PubMed] [Google Scholar]
  50. Leicht B. G., Muse S. V., Hanczyc M., Clark A. G. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. doi: 10.1093/genetics/139.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Li W. H., Nei M. Stable linkage disequilibrium without epistasis in subdivided populations. Theor Popul Biol. 1974 Oct;6(2):173–183. doi: 10.1016/0040-5809(74)90022-7. [DOI] [PubMed] [Google Scholar]
  52. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  53. Ludwig M. Z., Kreitman M. Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol Biol Evol. 1995 Nov;12(6):1002–1011. doi: 10.1093/oxfordjournals.molbev.a040277. [DOI] [PubMed] [Google Scholar]
  54. Miyashita N. T., Aguadé M., Langley C. H. Linkage disequilibrium in the white locus region of Drosophila melanogaster. Genet Res. 1993 Oct;62(2):101–109. doi: 10.1017/s0016672300031694. [DOI] [PubMed] [Google Scholar]
  55. Miyashita N. T., Langley C. H. Restriction map polymorphism in the forked and vermilion regions of Drosophila melanogaster. Jpn J Genet. 1994 Jun;69(3):297–305. doi: 10.1266/jjg.69.297. [DOI] [PubMed] [Google Scholar]
  56. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  57. Nei M., Maruyama T. Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics. 1975 Jun;80(2):395–395. doi: 10.1093/genetics/80.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Palopoli M. F., Wu C. I. Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics. 1996 Aug;143(4):1675–1688. doi: 10.1093/genetics/143.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Richter B., Long M., Lewontin R. C., Nitasaka E. Nucleotide variation and conservation at the dpp locus, a gene controlling early development in Drosophila. Genetics. 1997 Feb;145(2):311–323. doi: 10.1093/genetics/145.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Robertson A. Letters to the editors: Remarks on the Lewontin-Krakauer test. Genetics. 1975 Jun;80(2):396–396. doi: 10.1093/genetics/80.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rowan R. G., Hunt J. A. Rates of DNA change and phylogeny from the DNA sequences of the alcohol dehydrogenase gene for five closely related species of Hawaiian Drosophila. Mol Biol Evol. 1991 Jan;8(1):49–70. doi: 10.1093/oxfordjournals.molbev.a040636. [DOI] [PubMed] [Google Scholar]
  62. Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
  63. SCHULTZ J., REDFIELD H. Interchromosomal effects on crossing over in Drosophila. Cold Spring Harb Symp Quant Biol. 1951;16:175–197. doi: 10.1101/sqb.1951.016.01.015. [DOI] [PubMed] [Google Scholar]
  64. Simmons G. M., Kwok W., Matulonis P., Venkatesh T. Polymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1994 Jul;11(4):666–671. doi: 10.1093/oxfordjournals.molbev.a040145. [DOI] [PubMed] [Google Scholar]
  65. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  66. Sniegowski P. D., Pringle A., Hughes K. A. Effects of autosomal inversions on meiotic exchange in distal and proximal regions of the X chromosome in a natural population of Drosophila melanogaster. Genet Res. 1994 Feb;63(1):57–62. doi: 10.1017/s0016672300032080. [DOI] [PubMed] [Google Scholar]
  67. Stam L. F., Laurie C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1559–1564. doi: 10.1093/genetics/144.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stephan W., Xing L., Kirby D. A., Braverman J. M. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5649–5654. doi: 10.1073/pnas.95.10.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
  72. Walker C. First-rate scholarship by LeVasseur. Image J Nurs Sch. 1999;31(1):9–10. doi: 10.1111/j.1547-5069.1999.tb00407.x. [DOI] [PubMed] [Google Scholar]
  73. Wall J. D. A comparison of estimators of the population recombination rate. Mol Biol Evol. 2000 Jan;17(1):156–163. doi: 10.1093/oxfordjournals.molbev.a026228. [DOI] [PubMed] [Google Scholar]
  74. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  75. Wayne M. L., Contamine D., Kreitman M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol. 1996 Jan;13(1):191–199. doi: 10.1093/oxfordjournals.molbev.a025555. [DOI] [PubMed] [Google Scholar]
  76. Wesley C. S., Eanes W. F. Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3132–3136. doi: 10.1073/pnas.91.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES