Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):45–58. doi: 10.1093/genetics/156.1.45

Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging.

D S Yuan 1
PMCID: PMC1461233  PMID: 10978274

Abstract

The biochemistry of human nutritional zinc deficiency remains poorly defined. To characterize in genetic terms how cells respond to zinc deprivation, zinc-regulated genes (ZRG's) were identified in yeast. Gene expression was probed using random lacZ reporter gene fusions, integrated by transposon tagging into a diploid genome as previously described. About half of the genome was examined. Cells exhibiting differences in lacZ expression on low or moderate ( approximately 0. 1 vs. 10 microm) zinc media were isolated and the gene fusions were sequenced. Ribonuclease protection assays demonstrated four- to eightfold increases for the RNAs of the ZAP1, ZRG17 (YNR039c), DPP1, ADH4, MCD4, and YEF3B genes in zinc-deficient cells. All but YEF3B were shown through reporter gene assays to be controlled by a master regulator of zinc homeostasis now known to be encoded by ZAP1. ZAP1 mutants lacked the flocculence and distended vacuoles characteristic of zinc-deficient cells, suggesting that flocculation and vacuolation serve homeostatic functions in zinc-deficient cells. ZRG17 mutants required extra zinc supplementation to repress these phenotypes, suggesting that ZRG17 functions in zinc uptake. These findings illustrate the utility of transposon tagging as an approach for studying regulated gene expression in yeast.

Full Text

The Full Text of this article is available as a PDF (568.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggett P. J., Comerford J. G. Zinc and human health. Nutr Rev. 1995 Sep;53(9 Pt 2):S16–S22. [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Askwith C., Kaplan J. Iron and copper transport in yeast and its relevance to human disease. Trends Biochem Sci. 1998 Apr;23(4):135–138. doi: 10.1016/s0968-0004(98)01192-x. [DOI] [PubMed] [Google Scholar]
  4. Aslanidis C., de Jong P. J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 1990 Oct 25;18(20):6069–6074. doi: 10.1093/nar/18.20.6069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996 Jul 26;86(2):263–274. doi: 10.1016/s0092-8674(00)80098-7. [DOI] [PubMed] [Google Scholar]
  6. Beck F. W., Kaplan J., Fine N., Handschu W., Prasad A. S. Decreased expression of CD73 (ecto-5'-nucleotidase) in the CD8+ subset is associated with zinc deficiency in human patients. J Lab Clin Med. 1997 Aug;130(2):147–156. doi: 10.1016/s0022-2143(97)90091-3. [DOI] [PubMed] [Google Scholar]
  7. Berg J. M., Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996 Feb 23;271(5252):1081–1085. doi: 10.1126/science.271.5252.1081. [DOI] [PubMed] [Google Scholar]
  8. Blanchard R. K., Cousins R. J. Differential display of intestinal mRNAs regulated by dietary zinc. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6863–6868. doi: 10.1073/pnas.93.14.6863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Culotta V. C., Lin S. J., Schmidt P., Klomp L. W., Casareno R. L., Gitlin J. Intracellular pathways of copper trafficking in yeast and humans. Adv Exp Med Biol. 1999;448:247–254. doi: 10.1007/978-1-4615-4859-1_22. [DOI] [PubMed] [Google Scholar]
  10. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  11. Dang V. D., Valens M., Bolotin-Fukuhara M., Daignan-Fornier B. A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast. 1994 Oct;10(10):1273–1283. doi: 10.1002/yea.320101004. [DOI] [PubMed] [Google Scholar]
  12. DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
  13. Drewke C., Ciriacy M. Overexpression, purification and properties of alcohol dehydrogenase IV from Saccharomyces cerevisiae. Biochim Biophys Acta. 1988 May 6;950(1):54–60. doi: 10.1016/0167-4781(88)90072-3. [DOI] [PubMed] [Google Scholar]
  14. Dugaiczyk A., Boyer H. W., Goodman H. M. Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol. 1975 Jul 25;96(1):171–184. doi: 10.1016/0022-2836(75)90189-8. [DOI] [PubMed] [Google Scholar]
  15. Eide D. Molecular biology of iron and zinc uptake in eukaryotes. Curr Opin Cell Biol. 1997 Aug;9(4):573–577. doi: 10.1016/s0955-0674(97)80036-1. [DOI] [PubMed] [Google Scholar]
  16. Erdman S., Lin L., Malczynski M., Snyder M. Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol. 1998 Feb 9;140(3):461–483. doi: 10.1083/jcb.140.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gary J. D., Wurmser A. E., Bonangelino C. J., Weisman L. S., Emr S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol. 1998 Oct 5;143(1):65–79. doi: 10.1083/jcb.143.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gaynor E. C., Mondésert G., Grimme S. J., Reed S. I., Orlean P., Emr S. D. MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol Biol Cell. 1999 Mar;10(3):627–648. doi: 10.1091/mbc.10.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gitan R. S., Luo H., Rodgers J., Broderius M., Eide D. Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem. 1998 Oct 30;273(44):28617–28624. doi: 10.1074/jbc.273.44.28617. [DOI] [PubMed] [Google Scholar]
  20. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B., Labarre J. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem. 1998 Aug 28;273(35):22480–22489. doi: 10.1074/jbc.273.35.22480. [DOI] [PubMed] [Google Scholar]
  21. Goffeau A. Yeast. Genes in search of functions. Nature. 1994 May 12;369(6476):101–102. doi: 10.1038/369101a0. [DOI] [PubMed] [Google Scholar]
  22. Grider A., Bailey L. B., Cousins R. J. Erythrocyte metallothionein as an index of zinc status in humans. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1259–1262. doi: 10.1073/pnas.87.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Katagiri T., Shinozaki K. Disruption of a gene encoding phosphatidic acid phosphatase causes abnormal phenotypes in cell growth and abnormal cytokinesis in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1998 Jul 9;248(1):87–92. doi: 10.1006/bbrc.1998.8914. [DOI] [PubMed] [Google Scholar]
  24. Kim J. M., Vanguri S., Boeke J. D., Gabriel A., Voytas D. F. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998 May;8(5):464–478. doi: 10.1101/gr.8.5.464. [DOI] [PubMed] [Google Scholar]
  25. Kobayashi O., Hayashi N., Kuroki R., Sone H. Region of FLO1 proteins responsible for sugar recognition. J Bacteriol. 1998 Dec;180(24):6503–6510. doi: 10.1128/jb.180.24.6503-6510.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LES Netto, Chae H. Z., Kang S. W., Rhee S. G., Stadtman E. R. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem. 1996 Jun 28;271(26):15315–15321. doi: 10.1074/jbc.271.26.15315. [DOI] [PubMed] [Google Scholar]
  27. Licastro F., Davis L. J., Mocchegiani E., Fabris N. Impaired peripheral zinc metabolism in patients with senile dementia of probable Alzheimer's type as shown by low plasma concentrations of thymulin. Biol Trace Elem Res. 1996 Jan;51(1):55–62. doi: 10.1007/BF02790147. [DOI] [PubMed] [Google Scholar]
  28. Lussier M., White A. M., Sheraton J., di Paolo T., Treadwell J., Southard S. B., Horenstein C. I., Chen-Weiner J., Ram A. F., Kapteyn J. C. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):435–450. doi: 10.1093/genetics/147.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maurice T. C., Mazzucco C. E., Ramanathan C. S., Ryan B. M., Warr G. A., Puziss J. W. A highly conserved intraspecies homolog of the Saccharomyces cerevisiae elongation factor-3 encoded by the HEF3 gene. Yeast. 1998 Sep 15;14(12):1105–1113. doi: 10.1002/(SICI)1097-0061(19980915)14:12<1105::AID-YEA313>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  30. Mondésert G., Clarke D. J., Reed S. I. Identification of genes controlling growth polarity in the budding yeast Saccharomyces cerevisiae: a possible role of N-glycosylation and involvement of the exocyst complex. Genetics. 1997 Oct;147(2):421–434. doi: 10.1093/genetics/147.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Myers A. M., Tzagoloff A., Kinney D. M., Lusty C. J. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene. 1986;45(3):299–310. doi: 10.1016/0378-1119(86)90028-4. [DOI] [PubMed] [Google Scholar]
  32. Mösch H. U., Fink G. R. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics. 1997 Mar;145(3):671–684. doi: 10.1093/genetics/145.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Piruat J. I., Aguilera A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 1998 Aug 17;17(16):4859–4872. doi: 10.1093/emboj/17.16.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roberts C. J., Raymond C. K., Yamashiro C. T., Stevens T. H. Methods for studying the yeast vacuole. Methods Enzymol. 1991;194:644–661. doi: 10.1016/0076-6879(91)94047-g. [DOI] [PubMed] [Google Scholar]
  35. Ruby S. W., Szostak J. W. Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damaging agents. Mol Cell Biol. 1985 Jan;5(1):75–84. doi: 10.1128/mcb.5.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rupp S., Summers E., Lo H. J., Madhani H., Fink G. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999 Mar 1;18(5):1257–1269. doi: 10.1093/emboj/18.5.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sarthy A. V., McGonigal T., Capobianco J. O., Schmidt M., Green S. R., Moehle C. M., Goldman R. C. Identification and kinetic analysis of a functional homolog of elongation factor 3, YEF3 in Saccharomyces cerevisiae. Yeast. 1998 Feb;14(3):239–253. doi: 10.1002/(SICI)1097-0061(199802)14:3<239::AID-YEA219>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  38. Shankar A. H., Prasad A. S. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998 Aug;68(2 Suppl):447S–463S. doi: 10.1093/ajcn/68.2.447S. [DOI] [PubMed] [Google Scholar]
  39. Shay N. F., Cousins R. J. Cloning of rat intestinal mRNAs affected by zinc deficiency. J Nutr. 1993 Jan;123(1):35–41. doi: 10.1093/jn/123.1.35. [DOI] [PubMed] [Google Scholar]
  40. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  41. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stott K., Saito K., Thiele D. J., Massey V. Old Yellow Enzyme. The discovery of multiple isozymes and a family of related proteins. J Biol Chem. 1993 Mar 25;268(9):6097–6106. [PubMed] [Google Scholar]
  43. Stratford M. Yeast flocculation: reconciliation of physiological and genetic viewpoints. Yeast. 1992 Jan;8(1):25–38. doi: 10.1002/yea.320080103. [DOI] [PubMed] [Google Scholar]
  44. Teunissen A. W., van den Berg J. A., Steensma H. Y. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast. 1995 Apr 30;11(5):435–446. doi: 10.1002/yea.320110506. [DOI] [PubMed] [Google Scholar]
  45. Thomas D., Kuras L., Barbey R., Cherest H., Blaiseau P. L., Surdin-Kerjan Y. Met30p, a yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential protein with WD40 repeats. Mol Cell Biol. 1995 Dec;15(12):6526–6534. doi: 10.1128/mcb.15.12.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Toke D. A., Bennett W. L., Dillon D. A., Wu W. I., Chen X., Ostrander D. B., Oshiro J., Cremesti A., Voelker D. R., Fischl A. S. Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding diacylglycerol pyrophosphate phosphatase. J Biol Chem. 1998 Feb 6;273(6):3278–3284. doi: 10.1074/jbc.273.6.3278. [DOI] [PubMed] [Google Scholar]
  47. Velculescu V. E., Zhang L., Vogelstein B., Kinzler K. W. Serial analysis of gene expression. Science. 1995 Oct 20;270(5235):484–487. doi: 10.1126/science.270.5235.484. [DOI] [PubMed] [Google Scholar]
  48. Walsh C. T., Sandstead H. H., Prasad A. S., Newberne P. M., Fraker P. J. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect. 1994 Jun;102 (Suppl 2):5–46. doi: 10.1289/ehp.941025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wieland J., Nitsche A. M., Strayle J., Steiner H., Rudolph H. K. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 1995 Aug 15;14(16):3870–3882. doi: 10.1002/j.1460-2075.1995.tb00059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yamamoto A., DeWald D. B., Boronenkov I. V., Anderson R. A., Emr S. D., Koshland D. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell. 1995 May;6(5):525–539. doi: 10.1091/mbc.6.5.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhao H., Butler E., Rodgers J., Spizzo T., Duesterhoeft S., Eide D. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem. 1998 Oct 30;273(44):28713–28720. doi: 10.1074/jbc.273.44.28713. [DOI] [PubMed] [Google Scholar]
  52. Zhao H., Eide D. J. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol Cell Biol. 1997 Sep;17(9):5044–5052. doi: 10.1128/mcb.17.9.5044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zhao H., Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem. 1996 Sep 20;271(38):23203–23210. doi: 10.1074/jbc.271.38.23203. [DOI] [PubMed] [Google Scholar]
  54. Zhao H., Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2454–2458. doi: 10.1073/pnas.93.6.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van der Vaart J. M., van Schagen F. S., Mooren A. T., Chapman J. W., Klis F. M., Verrips C. T. The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound Cwp2p is beta-1,6-glucosylated. Biochim Biophys Acta. 1996 Dec 6;1291(3):206–214. doi: 10.1016/s0304-4165(96)00067-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES