Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 9;93(14):6863–6868. doi: 10.1073/pnas.93.14.6863

Differential display of intestinal mRNAs regulated by dietary zinc.

R K Blanchard 1, R J Cousins 1
PMCID: PMC38899  PMID: 8692909

Abstract

Regulation of gene expression by zinc is well established, especially through the metal response elements of the metallothionein genes; however, most other aspects of the functions of zinc in gene expression remain unknown. We have looked for intestinal mRNAs that are regulated by dietary zinc status. Using the reverse transcriptase-PCR method of mRNA differential display, we compared intestinal mRNA from rats that were maintained for 18 days in one of three dietary groups: zinc-deficient, zinc-adequate, and pair-fed zinc-adequate. At the end of this period, total RNA was prepared from the intestine and analyzed by mRNA differential display. Under these conditions, only differentially displayed cDNA bands that varied in the zinc-deficient group, relative to the zinc-adequate groups, were selected. Utilizing two anchored oligo-dT3' PCR primers and a total of 27 arbitrary decamers as 5' PCR primers, our results yielded 47 differentially displayed cDNA bands from intestinal RNA. Thirty were increased in zinc deficiency, and 17 were decreased. Nineteen bands were subcloned and sequenced. Eleven of these were detectable on Northern blots, of which four were confirmed as regulated. Three of these have homology to known genes: cholecystokinin, uroguanylin, and ubiquinone oxidoreductase. The fourth is a novel sequence as it has no significant homology in GenBank. The remainder of those cloned included novel sequences, as well as matches to reported expressed sequence tags, and functionally identified genes. Further characterization of the regulated sequences identified here will show whether they are primary or secondary effects of zinc deficiency.

Full text

PDF
6863

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bauer D., Müller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P., Strauss M. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 1993 Sep 11;21(18):4272–4280. doi: 10.1093/nar/21.18.4272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilofsky H. S., Burks C. The GenBank genetic sequence data bank. Nucleic Acids Res. 1988 Mar 11;16(5):1861–1863. doi: 10.1093/nar/16.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Callard D., Lescure B., Mazzolini L. A method for the elimination of false positives generated by the mRNA differential display technique. Biotechniques. 1994 Jun;16(6):1096-7, 1100-3. [PubMed] [Google Scholar]
  5. Chesters J. K., Quarterman J. Effects of zinc deficiency on food intake and feeding patterns of rats. Br J Nutr. 1970 Dec;24(4):1061–1069. doi: 10.1079/bjn19700109. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cousins R. J., Lee-Ambrose L. M. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr. 1992 Jan;122(1):56–64. doi: 10.1093/jn/122.1.56. [DOI] [PubMed] [Google Scholar]
  8. Cousins R. J. Metal elements and gene expression. Annu Rev Nutr. 1994;14:449–469. doi: 10.1146/annurev.nu.14.070194.002313. [DOI] [PubMed] [Google Scholar]
  9. Culotta V. C., Hamer D. H. Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol. 1989 Mar;9(3):1376–1380. doi: 10.1128/mcb.9.3.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraker P. J., Osati-Ashtiani F., Wagner M. A., King L. E. Possible roles for glucocorticoids and apoptosis in the suppression of lymphopoiesis during zinc deficiency: a review. J Am Coll Nutr. 1995 Feb;14(1):11–17. doi: 10.1080/07315724.1995.10718467. [DOI] [PubMed] [Google Scholar]
  12. Grider J. R. Role of cholecystokinin in the regulation of gastrointestinal motility. J Nutr. 1994 Aug;124(8 Suppl):1334S–1339S. doi: 10.1093/jn/124.suppl_8.1334S. [DOI] [PubMed] [Google Scholar]
  13. Hill O., Cetin Y., Cieslak A., Mägert H. J., Forssmann W. G. A new human guanylate cyclase-activating peptide (GCAP-II, uroguanylin): precursor cDNA and colonic expression. Biochim Biophys Acta. 1995 Dec 6;1253(2):146–149. doi: 10.1016/0167-4838(95)00204-4. [DOI] [PubMed] [Google Scholar]
  14. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  15. Kar S., Carr B. I. Differential display and cloning of messenger RNAs from the late phase of rat liver regeneration. Biochem Biophys Res Commun. 1995 Jul 6;212(1):21–26. doi: 10.1006/bbrc.1995.1930. [DOI] [PubMed] [Google Scholar]
  16. Kawasaki E. S., Clark S. S., Coyne M. Y., Smith S. D., Champlin R., Witte O. N., McCormick F. P. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5698–5702. doi: 10.1073/pnas.85.15.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koizumi S., Suzuki K., Otsuka F. A nuclear factor that recognizes the metal-responsive elements of human metallothionein IIA gene. J Biol Chem. 1992 Sep 15;267(26):18659–18664. [PubMed] [Google Scholar]
  18. Kuwano R., Araki K., Usui H., Fukui T., Ohtsuka E., Ikehara M., Takahashi Y. Molecular cloning and nucleotide sequence of cDNA coding for rat brain cholecystokinin precursor. J Biochem. 1984 Sep;96(3):923–926. doi: 10.1093/oxfordjournals.jbchem.a134911. [DOI] [PubMed] [Google Scholar]
  19. Lee M. C., Schiffman S. S., Pappas T. N. Role of neuropeptides in the regulation of feeding behavior: a review of cholecystokinin, bombesin, neuropeptide Y, and galanin. Neurosci Biobehav Rev. 1994 Fall;18(3):313–323. doi: 10.1016/0149-7634(94)90045-0. [DOI] [PubMed] [Google Scholar]
  20. Levenson C. W., Shay N. F., Lee-Ambrose L. M., Cousins R. J. Regulation of cysteine-rich intestinal protein by dexamethasone in the neonatal rat. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):712–715. doi: 10.1073/pnas.90.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li F., Barnathan E. S., Karikó K. Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of northern blot for affinity capturing of cDNAs. Nucleic Acids Res. 1994 May 11;22(9):1764–1765. doi: 10.1093/nar/22.9.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liang P., Averboukh L., Keyomarsi K., Sager R., Pardee A. B. Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res. 1992 Dec 15;52(24):6966–6968. [PubMed] [Google Scholar]
  23. Liang P., Averboukh L., Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. doi: 10.1093/nar/21.14.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  25. Liang P., Zhu W., Zhang X., Guo Z., O'Connell R. P., Averboukh L., Wang F., Pardee A. B. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 1994 Dec 25;22(25):5763–5764. doi: 10.1093/nar/22.25.5763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McClelland M., Ralph D., Cheng R., Welsh J. Interactions among regulators of RNA abundance characterized using RNA fingerprinting by arbitrarily primed PCR. Nucleic Acids Res. 1994 Oct 25;22(21):4419–4431. doi: 10.1093/nar/22.21.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mengus G., May M., Jacq X., Staub A., Tora L., Chambon P., Davidson I. Cloning and characterization of hTAFII18, hTAFII20 and hTAFII28: three subunits of the human transcription factor TFIID. EMBO J. 1995 Apr 3;14(7):1520–1531. doi: 10.1002/j.1460-2075.1995.tb07138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mou L., Miller H., Li J., Wang E., Chalifour L. Improvements to the differential display method for gene analysis. Biochem Biophys Res Commun. 1994 Mar 15;199(2):564–569. doi: 10.1006/bbrc.1994.1265. [DOI] [PubMed] [Google Scholar]
  29. Niederau C., Lüthen R., Heintges T. Effects of CCK on pancreatic function and morphology. Ann N Y Acad Sci. 1994 Mar 23;713:180–198. doi: 10.1111/j.1749-6632.1994.tb44065.x. [DOI] [PubMed] [Google Scholar]
  30. Nishio Y., Aiello L. P., King G. L. Glucose induced genes in bovine aortic smooth muscle cells identified by mRNA differential display. FASEB J. 1994 Jan;8(1):103–106. doi: 10.1096/fasebj.8.1.8299882. [DOI] [PubMed] [Google Scholar]
  31. O'Halloran T. V. Transition metals in control of gene expression. Science. 1993 Aug 6;261(5122):715–725. doi: 10.1126/science.8342038. [DOI] [PubMed] [Google Scholar]
  32. Okubo K., Hori N., Matoba R., Niiyama T., Fukushima A., Kojima Y., Matsubara K. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet. 1992 Nov;2(3):173–179. doi: 10.1038/ng1192-173. [DOI] [PubMed] [Google Scholar]
  33. Palmiter R. D. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1219–1223. doi: 10.1073/pnas.91.4.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J. 1993 Apr;12(4):1355–1362. doi: 10.1002/j.1460-2075.1993.tb05780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reidelberger R. D. Cholecystokinin and control of food intake. J Nutr. 1994 Aug;124(8 Suppl):1327S–1333S. doi: 10.1093/jn/124.suppl_8.1327S. [DOI] [PubMed] [Google Scholar]
  36. Shay N. F., Cousins R. J. Cloning of rat intestinal mRNAs affected by zinc deficiency. J Nutr. 1993 Jan;123(1):35–41. doi: 10.1093/jn/123.1.35. [DOI] [PubMed] [Google Scholar]
  37. Sunday M. E. Differential display RT-PCR for identifying novel gene expression in the lung. Am J Physiol. 1995 Sep;269(3 Pt 1):L273–L284. doi: 10.1152/ajplung.1995.269.3.L273. [DOI] [PubMed] [Google Scholar]
  38. Telford W. G., Fraker P. J. Preferential induction of apoptosis in mouse CD4+CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. J Cell Physiol. 1995 Aug;164(2):259–270. doi: 10.1002/jcp.1041640206. [DOI] [PubMed] [Google Scholar]
  39. Utans U., Liang P., Wyner L. R., Karnovsky M. J., Russell M. E. Chronic cardiac rejection: identification of five upregulated genes in transplanted hearts by differential mRNA display. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6463–6467. doi: 10.1073/pnas.91.14.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Walker J. E., Arizmendi J. M., Dupuis A., Fearnley I. M., Finel M., Medd S. M., Pilkington S. J., Runswick M. J., Skehel J. M. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol. 1992 Aug 20;226(4):1051–1072. doi: 10.1016/0022-2836(92)91052-q. [DOI] [PubMed] [Google Scholar]
  41. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yeatman T. J., Mao W. Identification of a differentially-expressed message associated with colon cancer liver metastasis using an improved method of differential display. Nucleic Acids Res. 1995 Oct 11;23(19):4007–4008. doi: 10.1093/nar/23.19.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yiangou M., Ge X., Carter K. C., Papaconstantinou J. Induction of several acute-phase protein genes by heavy metals: a new class of metal-responsive genes. Biochemistry. 1991 Apr 16;30(15):3798–3806. doi: 10.1021/bi00229a029. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES