Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):327–339. doi: 10.1093/genetics/156.1.327

Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line.

O Riera-Lizarazu 1, M I Vales 1, E V Ananiev 1, H W Rines 1, R L Phillips 1
PMCID: PMC1461246  PMID: 10978296

Abstract

In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)-oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0. 5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.

Full Text

The Full Text of this article is available as a PDF (999.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananiev E. V., Phillips R. L., Rines H. W. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10785–10790. doi: 10.1073/pnas.95.18.10785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananiev E. V., Phillips R. L., Rines H. W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073–13078. doi: 10.1073/pnas.95.22.13073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ananiev E. V., Phillips R. L., Rines H. W. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics. 1998 Aug;149(4):2025–2037. doi: 10.1093/genetics/149.4.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ananiev E. V., Riera-Lizarazu O., Rines H. W., Phillips R. L. Oat-maize chromosome addition lines: a new system for mapping the maize genome. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3524–3529. doi: 10.1073/pnas.94.8.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bass H. W., Riera-Lizarazu O., Ananiev E. V., Bordoli S. J., Rines H. W., Phillips R. L., Sedat J. W., Agard D. A., Cande W. Z. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci. 2000 Mar;113(Pt 6):1033–1042. doi: 10.1242/jcs.113.6.1033. [DOI] [PubMed] [Google Scholar]
  6. Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
  7. Bennetzen J. L., Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 1993 Aug;9(8):259–261. doi: 10.1016/0168-9525(93)90001-x. [DOI] [PubMed] [Google Scholar]
  8. Bennetzen J. L., Schrick K., Springer P. S., Brown W. E., SanMiguel P. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome. 1994 Aug;37(4):565–576. doi: 10.1139/g94-081. [DOI] [PubMed] [Google Scholar]
  9. Chumakov I. M., Rigault P., Le Gall I., Bellanné-Chantelot C., Billault A., Guillou S., Soularue P., Guasconi G., Poullier E., Gros I. A YAC contig map of the human genome. Nature. 1995 Sep 28;377(6547 Suppl):175–297. doi: 10.1038/377175a0. [DOI] [PubMed] [Google Scholar]
  10. Cox D. R., Burmeister M., Price E. R., Kim S., Myers R. M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990 Oct 12;250(4978):245–250. doi: 10.1126/science.2218528. [DOI] [PubMed] [Google Scholar]
  11. Deloukas P., Schuler G. D., Gyapay G., Beasley E. M., Soderlund C., Rodriguez-Tomé P., Hui L., Matise T. C., McKusick K. B., Beckmann J. S. A physical map of 30,000 human genes. Science. 1998 Oct 23;282(5389):744–746. doi: 10.1126/science.282.5389.744. [DOI] [PubMed] [Google Scholar]
  12. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  13. Driscoll C J, Jensen N F. A Genetic Method for Detecting Induced Intergeneric Translocations. Genetics. 1963 Apr;48(4):459–468. doi: 10.1093/genetics/48.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards K. J., Thompson H., Edwards D., de Saizieu A., Sparks C., Thompson J. A., Greenland A. J., Eyers M., Schuch W. Construction and characterisation of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Mol Biol. 1992 May;19(2):299–308. doi: 10.1007/BF00027351. [DOI] [PubMed] [Google Scholar]
  15. Flavell R. B. Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):227–242. doi: 10.1098/rstb.1986.0004. [DOI] [PubMed] [Google Scholar]
  16. Foote T., Roberts M., Kurata N., Sasaki T., Moore G. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics. 1997 Oct;147(2):801–807. doi: 10.1093/genetics/147.2.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goss S. J., Harris H. New method for mapping genes in human chromosomes. Nature. 1975 Jun 26;255(5511):680–684. doi: 10.1038/255680a0. [DOI] [PubMed] [Google Scholar]
  18. Gyapay G., Schmitt K., Fizames C., Jones H., Vega-Czarny N., Spillett D., Muselet D., Prud'homme J. F., Dib C., Auffray C. A radiation hybrid map of the human genome. Hum Mol Genet. 1996 Mar;5(3):339–346. doi: 10.1093/hmg/5.3.339. [DOI] [PubMed] [Google Scholar]
  19. Hawken R. J., Murtaugh J., Flickinger G. H., Yerle M., Robic A., Milan D., Gellin J., Beattie C. W., Schook L. B., Alexander L. J. A first-generation porcine whole-genome radiation hybrid map. Mamm Genome. 1999 Aug;10(8):824–830. doi: 10.1007/s003359901097. [DOI] [PubMed] [Google Scholar]
  20. Hong G., Qian Y., Yu S., Hu X., Zhu J., Tao W., Li W., Su C., Zhao H., Qiu L. A 120 kilobase resolution contig map of the rice genome. DNA Seq. 1997;7(6):319–335. doi: 10.3109/10425179709034052. [DOI] [PubMed] [Google Scholar]
  21. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  22. Kodama Y., Nakano M., Ohtaki K., Delongchamp R., Awa A. A., Nakamura N. Estimation of minimal size of translocated chromosome segments detectable by fluorescence in situ hybridization. Int J Radiat Biol. 1997 Jan;71(1):35–39. doi: 10.1080/095530097144391. [DOI] [PubMed] [Google Scholar]
  23. Kurata N., Umehara Y., Tanoue H., Sasaki T. Physical mapping of the rice genome with YAC clones. Plant Mol Biol. 1997 Sep;35(1-2):101–113. [PubMed] [Google Scholar]
  24. Ledbetter S. A., Nelson D. L., Warren S. T., Ledbetter D. H. Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction. Genomics. 1990 Mar;6(3):475–481. doi: 10.1016/0888-7543(90)90477-c. [DOI] [PubMed] [Google Scholar]
  25. McCarthy L. C., Terrett J., Davis M. E., Knights C. J., Smith A. L., Critcher R., Schmitt K., Hudson J., Spurr N. K., Goodfellow P. N. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 1997 Dec;7(12):1153–1161. doi: 10.1101/gr.7.12.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  27. Priat C., Hitte C., Vignaux F., Renier C., Jiang Z., Jouquand S., Chéron A., André C., Galibert F. A whole-genome radiation hybrid map of the dog genome. Genomics. 1998 Dec 15;54(3):361–378. doi: 10.1006/geno.1998.5602. [DOI] [PubMed] [Google Scholar]
  28. Pritchard C. A., Casher D., Uglum E., Cox D. R., Myers R. M. Isolation and field-inversion gel electrophoresis analysis of DNA markers located close to the Huntington disease gene. Genomics. 1989 Apr;4(3):408–418. doi: 10.1016/0888-7543(89)90348-0. [DOI] [PubMed] [Google Scholar]
  29. Sachs R. K., Chen A. M., Brenner D. J. Review: proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol. 1997 Jan;71(1):1–19. doi: 10.1080/095530097144364. [DOI] [PubMed] [Google Scholar]
  30. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  31. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  32. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  33. Simpson P. J., Savage J. R. Dose-response curves for simple and complex chromosome aberrations induced by X-rays and detected using fluorescence in situ hybridization. Int J Radiat Biol. 1996 Apr;69(4):429–436. doi: 10.1080/095530096145724. [DOI] [PubMed] [Google Scholar]
  34. Stewart E. A., McKusick K. B., Aggarwal A., Bajorek E., Brady S., Chu A., Fang N., Hadley D., Harris M., Hussain S. An STS-based radiation hybrid map of the human genome. Genome Res. 1997 May;7(5):422–433. doi: 10.1101/gr.7.5.422. [DOI] [PubMed] [Google Scholar]
  35. Vignaux F., Hitte C., Priat C., Chuat J. C., Andre C., Galibert F. Construction and optimization of a dog whole-genome radiation hybrid panel. Mamm Genome. 1999 Sep;10(9):888–894. doi: 10.1007/s003359901109. [DOI] [PubMed] [Google Scholar]
  36. Watanabe T. K., Bihoreau M. T., McCarthy L. C., Kiguwa S. L., Hishigaki H., Tsuji A., Browne J., Yamasaki Y., Mizoguchi-Miyakita A., Oga K. A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet. 1999 May;22(1):27–36. doi: 10.1038/8737. [DOI] [PubMed] [Google Scholar]
  37. Yerle M., Pinton P., Robic A., Alfonso A., Palvadeau Y., Delcros C., Hawken R., Alexander L., Beattie C., Schook L. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet. 1998;82(3-4):182–188. doi: 10.1159/000015095. [DOI] [PubMed] [Google Scholar]
  38. Yokota H., van den Engh G., Hearst J. E., Sachs R. K., Trask B. J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol. 1995 Sep;130(6):1239–1249. doi: 10.1083/jcb.130.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zachgo E. A., Wang M. L., Dewdney J., Bouchez D., Camilleri C., Belmonte S., Huang L., Dolan M., Goodman H. M. A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res. 1996 Jan;6(1):19–25. doi: 10.1101/gr.6.1.19. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES