Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):173–182. doi: 10.1093/genetics/156.1.173

Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns.

G K Christophides 1, I Livadaras 1, C Savakis 1, K Komitopoulou 1
PMCID: PMC1461254  PMID: 10978283

Abstract

Genes encoding predominantly male-specific serum polypeptides (MSSPs) in the medfly Ceratitis capitata are members of a multigene family that are structurally similar to the genes encoding odorant binding proteins of insects. To study the transcriptional regulation of the genes MSSP-alpha2 and MSSP-beta2, overlapping fragments of their promoters, containing the 5' UTRs and 5' flanking regions, were fused to the lacZ reporter gene and introduced into the medfly genome via Minos-mediated germline transformation. Transgenic flies were functionally assayed for beta-galactosidase activity. Despite their extensive sequence similarity, the two gene promoters show distinct expression patterns of the reporter gene, consistent with previously reported evidence for analogous transcriptional activity of the corresponding endogenous genes. The MSSP-alpha2 promoter drives gene expression specifically in the fat body of the adult males, whereas the MSSP-beta2 promoter directs gene expression in the midgut of both sexes. In contrast, similar transformation experiments in Drosophila melanogaster showed that both promoters drive the expression of the reporter gene in the midgut of adult flies of both sexes. Thus, the very same MSSP-alpha2 promoter fragment directs expression in the adult male fat body in Ceratitis, but in the midgut of both sexes in Drosophila. Our data suggest that through the evolution of the MSSP gene family a limited number of mutations that occurred within certain cis-acting elements, in combination with new medfly-specific trans-acting factors, endowed these recently duplicated genes with distinct sex-, tissue-, and temporal-specific expression patterns.

Full Text

The Full Text of this article is available as a PDF (787.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniewski C., Mugat B., Delbac F., Lepesant J. A. Direct repeats bind the EcR/USP receptor and mediate ecdysteroid responses in Drosophila melanogaster. Mol Cell Biol. 1996 Jun;16(6):2977–2986. doi: 10.1128/mcb.16.6.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
  3. Cherbas L., Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. doi: 10.1016/0965-1748(93)90085-7. [DOI] [PubMed] [Google Scholar]
  4. Christophides G. K., Mintzas A. C., Komitopoulou K. Organization, evolution and expression of a multigene family encoding putative members of the odourant binding protein family in the medfly Ceratitis capitata. Insect Mol Biol. 2000 Apr;9(2):185–195. doi: 10.1046/j.1365-2583.2000.00176.x. [DOI] [PubMed] [Google Scholar]
  5. Coates C. J., Jasinskiene N., Miyashiro L., James A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3748–3751. doi: 10.1073/pnas.95.7.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coates C. J., Jasinskiene N., Pott G. B., James A. A. Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of Hermes-transformed Aedes aegypti. Gene. 1999 Jan 21;226(2):317–325. doi: 10.1016/s0378-1119(98)00557-5. [DOI] [PubMed] [Google Scholar]
  7. Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fryxell K. J. The coevolution of gene family trees. Trends Genet. 1996 Sep;12(9):364–369. doi: 10.1016/s0168-9525(96)80020-5. [DOI] [PubMed] [Google Scholar]
  9. Gomulski L. M., Torti C., Malacrida A. R., Gasperi G. Ccmar1, a full-length mariner element from the Mediterranean fruit fly, Ceratitis capitata. Insect Mol Biol. 1997 Aug;6(3):241–253. doi: 10.1046/j.1365-2583.1997.00179.x. [DOI] [PubMed] [Google Scholar]
  10. Hama C., Ali Z., Kornberg T. B. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 1990 Jul;4(7):1079–1093. doi: 10.1101/gad.4.7.1079. [DOI] [PubMed] [Google Scholar]
  11. Handler A. M., McCombs S. D., Fraser M. J., Saul S. H. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7520–7525. doi: 10.1073/pnas.95.13.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hood L., Campbell J. H., Elgin S. C. The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet. 1975;9:305–353. doi: 10.1146/annurev.ge.09.120175.001513. [DOI] [PubMed] [Google Scholar]
  13. Jasinskiene N., Coates C. J., Benedict M. Q., Cornel A. J., Rafferty C. S., James A. A., Collins F. H. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3743–3747. doi: 10.1073/pnas.95.7.3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Konsolaki M., Komitopoulou K., Tolias P. P., King D. L., Swimmer C., Kafatos F. C. The chorion genes of the medfly, Ceratitis capitata, I: Structural and regulatory conservation of the s36 gene relative to two Drosophila species. Nucleic Acids Res. 1990 Apr 11;18(7):1731–1737. doi: 10.1093/nar/18.7.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loukeris T. G., Arcà B., Livadaras I., Dialektaki G., Savakis C. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9485–9489. doi: 10.1073/pnas.92.21.9485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loukeris T. G., Livadaras I., Arcà B., Zabalou S., Savakis C. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science. 1995 Dec 22;270(5244):2002–2005. doi: 10.1126/science.270.5244.2002. [DOI] [PubMed] [Google Scholar]
  17. Ludwig M. Z., Bergman C., Patel N. H., Kreitman M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature. 2000 Feb 3;403(6769):564–567. doi: 10.1038/35000615. [DOI] [PubMed] [Google Scholar]
  18. Marchini D., Giordano P. C., Amons R., Bernini L. F., Dallai R. Purification and primary structure of ceratotoxin A and B, two antibacterial peptides from the female reproductive accessory glands of the medfly Ceratitis capitata (Insecta:Diptera). Insect Biochem Mol Biol. 1993 Jul;23(5):591–598. doi: 10.1016/0965-1748(93)90032-n. [DOI] [PubMed] [Google Scholar]
  19. Mismer D., Rubin G. M. Analysis of the promoter of the ninaE opsin gene in Drosophila melanogaster. Genetics. 1987 Aug;116(4):565–578. doi: 10.1093/genetics/116.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rina M., Savakis C. A cluster of vitellogenin genes in the Mediterranean fruit fly Ceratitis capitata: sequence and structural conservation in dipteran yolk proteins and their genes. Genetics. 1991 Apr;127(4):769–780. doi: 10.1093/genetics/127.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saccone G., Peluso I., Artiaco D., Giordano E., Bopp D., Polito L. C. The Ceratitis capitata homologue of the Drosophila sex-determining gene sex-lethal is structurally conserved, but not sex-specifically regulated. Development. 1998 Apr;125(8):1495–1500. doi: 10.1242/dev.125.8.1495. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seifert H. S., Chen E. Y., So M., Heffron F. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Feb;83(3):735–739. doi: 10.1073/pnas.83.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simon J. A., Lis J. T. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. doi: 10.1093/nar/15.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Subramani S., Southern P. J. Analysis of gene expression using simian virus 40 vectors. Anal Biochem. 1983 Nov;135(1):1–15. doi: 10.1016/0003-2697(83)90723-6. [DOI] [PubMed] [Google Scholar]
  26. Tartof K. D. Redundant genes. Annu Rev Genet. 1975;9:355–385. doi: 10.1146/annurev.ge.09.120175.002035. [DOI] [PubMed] [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  29. Thymianou S., Mavroidis M., Kokolakis G., Komitopoulou K., Zacharopoulou A., Mintzas A. C. Cloning and characterization of a cDNA encoding a male-specific serum protein of the Mediterranean fruit fly, Ceratitis capitata, with sequence similarity to odourant-binding proteins. Insect Mol Biol. 1998 Nov;7(4):345–353. doi: 10.1046/j.1365-2583.1998.740345.x. [DOI] [PubMed] [Google Scholar]
  30. Tolias P. P., Konsolaki M., Komitopoulou K., Kafatos F. C. The chorion genes of the medfly, Ceratitis capitata. II. Characterization of three novel cDNA clones obtained by differential screening of an ovarian library. Dev Biol. 1990 Jul;140(1):105–112. doi: 10.1016/0012-1606(90)90057-p. [DOI] [PubMed] [Google Scholar]
  31. Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. doi: 10.1146/annurev.bi.63.070194.002315. [DOI] [PubMed] [Google Scholar]
  32. Vlachou D., Konsolaki M., Tolias P. P., Kafatos F. C., Komitopoulou K. The autosomal chorion locus of the medfly Ceratitis capitata. I. Conserved synteny, amplification and tissue specificity but sequence divergence and altered temporal regulation. Genetics. 1997 Dec;147(4):1829–1842. doi: 10.1093/genetics/147.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zwiebel L. J., Saccone G., Zacharopoulou A., Besansky N. J., Favia G., Collins F. H., Louis C., Kafatos F. C. The white gene of Ceratitis capitata: a phenotypic marker for germline transformation. Science. 1995 Dec 22;270(5244):2005–2008. doi: 10.1126/science.270.5244.2005. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES