Abstract
kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed.
Full Text
The Full Text of this article is available as a PDF (358.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett K., Leptin M., Settleman J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell. 1997 Dec 26;91(7):905–915. doi: 10.1016/s0092-8674(00)80482-1. [DOI] [PubMed] [Google Scholar]
- Basler K., Christen B., Hafen E. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell. 1991 Mar 22;64(6):1069–1081. doi: 10.1016/0092-8674(91)90262-w. [DOI] [PubMed] [Google Scholar]
- Cacace A. M., Michaud N. R., Therrien M., Mathes K., Copeland T., Rubin G. M., Morrison D. K. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol. 1999 Jan;19(1):229–240. doi: 10.1128/mcb.19.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell S. L., Khosravi-Far R., Rossman K. L., Clark G. J., Der C. J. Increasing complexity of Ras signaling. Oncogene. 1998 Sep 17;17(11 REVIEWS):1395–1413. doi: 10.1038/sj.onc.1202174. [DOI] [PubMed] [Google Scholar]
- Daubresse G., Deuring R., Moore L., Papoulas O., Zakrajsek I., Waldrip W. R., Scott M. P., Kennison J. A., Tamkun J. W. The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development. 1999 Mar;126(6):1175–1187. doi: 10.1242/dev.126.6.1175. [DOI] [PubMed] [Google Scholar]
- Denouel-Galy A., Douville E. M., Warne P. H., Papin C., Laugier D., Calothy G., Downward J., Eychène A. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998 Jan 1;8(1):46–55. doi: 10.1016/s0960-9822(98)70019-3. [DOI] [PubMed] [Google Scholar]
- Dickson B. J., van der Straten A., Dominguez M., Hafen E. Mutations Modulating Raf signaling in Drosophila eye development. Genetics. 1996 Jan;142(1):163–171. doi: 10.1093/genetics/142.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickson B., Sprenger F., Morrison D., Hafen E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature. 1992 Dec 10;360(6404):600–603. doi: 10.1038/360600a0. [DOI] [PubMed] [Google Scholar]
- Jacobs D., Glossip D., Xing H., Muslin A. J., Kornfeld K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 1999 Jan 15;13(2):163–175. [PMC free article] [PubMed] [Google Scholar]
- Kennison J. A., Tamkun J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8136–8140. doi: 10.1073/pnas.85.21.8136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimmel B. E., Heberlein U., Rubin G. M. The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev. 1990 May;4(5):712–727. doi: 10.1101/gad.4.5.712. [DOI] [PubMed] [Google Scholar]
- Kolodziej P. A., Jan L. Y., Jan Y. N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron. 1995 Aug;15(2):273–286. doi: 10.1016/0896-6273(95)90033-0. [DOI] [PubMed] [Google Scholar]
- Lu X., Li Y. Drosophila Src42A is a negative regulator of RTK signaling. Dev Biol. 1999 Apr 1;208(1):233–243. doi: 10.1006/dbio.1999.9196. [DOI] [PubMed] [Google Scholar]
- Maixner A., Hecker T. P., Phan Q. N., Wassarman D. A. A screen for mutations that prevent lethality caused by expression of activated sevenless and Ras1 in the Drosophila embryo. Dev Genet. 1998;23(4):347–361. doi: 10.1002/(SICI)1520-6408(1998)23:4<347::AID-DVG9>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Melnick M. B., Perkins L. A., Lee M., Ambrosio L., Perrimon N. Developmental and molecular characterization of mutations in the Drosophila-raf serine/threonine protein kinase. Development. 1993 May;118(1):127–138. doi: 10.1242/dev.118.1.127. [DOI] [PubMed] [Google Scholar]
- Michaud N. R., Therrien M., Cacace A., Edsall L. C., Spiegel S., Rubin G. M., Morrison D. K. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12792–12796. doi: 10.1073/pnas.94.24.12792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muchardt C., Yaniv M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J Mol Biol. 1999 Oct 22;293(2):187–198. doi: 10.1006/jmbi.1999.2999. [DOI] [PubMed] [Google Scholar]
- Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell. 1998 May 1;93(3):333–336. doi: 10.1016/s0092-8674(00)81162-9. [DOI] [PubMed] [Google Scholar]
- Rebay I., Chen F., Hsiao F., Kolodziej P. A., Kuang B. H., Laverty T., Suh C., Voas M., Williams A., Rubin G. M. A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics. 2000 Feb;154(2):695–712. doi: 10.1093/genetics/154.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
- Staehling-Hampton K., Ciampa P. J., Brook A., Dyson N. A genetic screen for modifiers of E2F in Drosophila melanogaster. Genetics. 1999 Sep;153(1):275–287. doi: 10.1093/genetics/153.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternberg P. W., Alberola-Ila J. Conspiracy theory: RAS and RAF do not act alone. Cell. 1998 Nov 13;95(4):447–450. doi: 10.1016/s0092-8674(00)81612-8. [DOI] [PubMed] [Google Scholar]
- Takahashi F., Endo S., Kojima T., Saigo K. Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev. 1996 Jul 1;10(13):1645–1656. doi: 10.1101/gad.10.13.1645. [DOI] [PubMed] [Google Scholar]
- Tamkun J. W., Deuring R., Scott M. P., Kissinger M., Pattatucci A. M., Kaufman T. C., Kennison J. A. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992 Feb 7;68(3):561–572. doi: 10.1016/0092-8674(92)90191-e. [DOI] [PubMed] [Google Scholar]
- Therrien M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., Rubin G. M. KSR, a novel protein kinase required for RAS signal transduction. Cell. 1995 Dec 15;83(6):879–888. doi: 10.1016/0092-8674(95)90204-x. [DOI] [PubMed] [Google Scholar]
- Therrien M., Michaud N. R., Rubin G. M., Morrison D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 1996 Nov 1;10(21):2684–2695. doi: 10.1101/gad.10.21.2684. [DOI] [PubMed] [Google Scholar]
- Therrien M., Wong A. M., Kwan E., Rubin G. M. Functional analysis of CNK in RAS signaling. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13259–13263. doi: 10.1073/pnas.96.23.13259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Therrien M., Wong A. M., Rubin G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell. 1998 Oct 30;95(3):343–353. doi: 10.1016/s0092-8674(00)81766-3. [DOI] [PubMed] [Google Scholar]
- Tomlinson A., Ready D. F. Neuronal differentiation in Drosophila ommatidium. Dev Biol. 1987 Apr;120(2):366–376. doi: 10.1016/0012-1606(87)90239-9. [DOI] [PubMed] [Google Scholar]
- Verheyen E. M., Purcell K. J., Fortini M. E., Artavanis-Tsakonas S. Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics. 1996 Nov;144(3):1127–1141. doi: 10.1093/genetics/144.3.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiellette E. L., Harding K. W., Mace K. A., Ronshaugen M. R., Wang F. Y., McGinnis W. spen encodes an RNP motif protein that interacts with Hox pathways to repress the development of head-like sclerites in the Drosophila trunk. Development. 1999 Dec;126(23):5373–5385. doi: 10.1242/dev.126.23.5373. [DOI] [PubMed] [Google Scholar]
- Woodage T., Basrai M. A., Baxevanis A. D., Hieter P., Collins F. S. Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11472–11477. doi: 10.1073/pnas.94.21.11472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xing H., Kornfeld K., Muslin A. J. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol. 1997 May 1;7(5):294–300. doi: 10.1016/s0960-9822(06)00152-7. [DOI] [PubMed] [Google Scholar]
- Yu W., Fantl W. J., Harrowe G., Williams L. T. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol. 1998 Jan 1;8(1):56–64. doi: 10.1016/s0960-9822(98)70020-x. [DOI] [PubMed] [Google Scholar]
- Zipursky S. L., Rubin G. M. Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Annu Rev Neurosci. 1994;17:373–397. doi: 10.1146/annurev.ne.17.030194.002105. [DOI] [PubMed] [Google Scholar]