Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1175–1190. doi: 10.1093/genetics/156.3.1175

The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces.

J M Comeron 1, M Kreitman 1
PMCID: PMC1461334  PMID: 11063693

Abstract

Intron length is negatively correlated with recombination in both Drosophila melanogaster and humans. This correlation is not likely to be the result of mutational processes alone: evolutionary analysis of intron length polymorphism in D. melanogaster reveals equivalent ratios of deletion to insertion in regions of high and low recombination. The polymorphism data do reveal, however, an excess of deletions relative to insertions (i.e., a deletion bias), with an overall deletion-to-insertion events ratio of 1.35. We propose two types of selection favoring longer intron lengths. First, the natural mutational bias toward deletion must be opposed by strong selection in very short introns to maintain the minimum intron length needed for the intron splicing reaction. Second, selection will favor insertions in introns that increase recombination between mutations under the influence of selection in adjacent exons. Mutations that increase recombination, even slightly, will be selectively favored because they reduce interference among selected mutations. Interference selection acting on intron length mutations must be very weak, as indicated by frequency spectrum analysis of Drosophila intron length polymorphism, making the equilibrium for intron length sensitive to changes in the recombinational environment and population size. One consequence of this sensitivity is that the advantage of longer introns is expected to decrease inversely with the rate of recombination, thus leading to a negative correlation between intron length and recombination rate. Also in accord with this model, intron length differs between closely related Drosophila species, with the longest variant present more often in D. melanogaster than in D. simulans. We suggest that the study of the proposed dynamic model, taking into account interference among selected sites, might shed light on many aspects of the comparative biology of genome sizes including the C value paradox.

Full Text

The Full Text of this article is available as a PDF (295.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Inferring the fitness effects of DNA mutations from polymorphism and divergence data: statistical power to detect directional selection under stationarity and free recombination. Genetics. 1999 Jan;151(1):221–238. doi: 10.1093/genetics/151.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics. 1996 Nov;144(3):1297–1307. doi: 10.1093/genetics/144.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akashi H., Schaeffer S. W. Natural selection and the frequency distributions of "silent" DNA polymorphism in Drosophila. Genetics. 1997 May;146(1):295–307. doi: 10.1093/genetics/146.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barton N. H. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. doi: 10.1093/genetics/140.2.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  8. Berget S. M., Moore C., Sharp P. A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3171–3175. doi: 10.1073/pnas.74.8.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bishop D. K., Andersen J., Kolodner R. D. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc Natl Acad Sci U S A. 1989 May;86(10):3713–3717. doi: 10.1073/pnas.86.10.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C. R., Lim E. P., Kalyanaraman N. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999 Jul;22(3):231–238. doi: 10.1038/10290. [DOI] [PubMed] [Google Scholar]
  12. Carvalho A. B., Clark A. G. Intron size and natural selection. Nature. 1999 Sep 23;401(6751):344–344. doi: 10.1038/43827. [DOI] [PubMed] [Google Scholar]
  13. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Charlesworth B. The changing sizes of genes. Nature. 1996 Nov 28;384(6607):315–316. doi: 10.1038/384315a0. [DOI] [PubMed] [Google Scholar]
  15. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  16. Comeron J. M. K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics. 1999 Sep;15(9):763–764. doi: 10.1093/bioinformatics/15.9.763. [DOI] [PubMed] [Google Scholar]
  17. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Corrette-Bennett S. E., Parker B. O., Mohlman N. L., Lahue R. S. Correction of large mispaired DNA loops by extracts of Saccharomyces cerevisiae. J Biol Chem. 1999 Jun 18;274(25):17605–17611. doi: 10.1074/jbc.274.25.17605. [DOI] [PubMed] [Google Scholar]
  19. Deloukas P., Schuler G. D., Gyapay G., Beasley E. M., Soderlund C., Rodriguez-Tomé P., Hui L., Matise T. C., McKusick K. B., Beckmann J. S. A physical map of 30,000 human genes. Science. 1998 Oct 23;282(5389):744–746. doi: 10.1126/science.282.5389.744. [DOI] [PubMed] [Google Scholar]
  20. Detloff P., Sieber J., Petes T. D. Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Feb;11(2):737–745. doi: 10.1128/mcb.11.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Deutsch M., Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999 Aug 1;27(15):3219–3228. doi: 10.1093/nar/27.15.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Duret L., Mouchiroud D., Gautier C. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol. 1995 Mar;40(3):308–317. doi: 10.1007/BF00163235. [DOI] [PubMed] [Google Scholar]
  23. Eanes W. F., Kirchner M., Yoon J., Biermann C. H., Wang I. N., McCartney M. A., Verrelli B. C. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. doi: 10.1093/genetics/144.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Eyre-Walker A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics. 1999 Jun;152(2):675–683. doi: 10.1093/genetics/152.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Eyre-Walker A. Recombination and mammalian genome evolution. Proc Biol Sci. 1993 Jun 22;252(1335):237–243. doi: 10.1098/rspb.1993.0071. [DOI] [PubMed] [Google Scholar]
  26. Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. doi: 10.1093/genetics/78.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Graur D., Shuali Y., Li W. H. Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol. 1989 Apr;28(4):279–285. doi: 10.1007/BF02103423. [DOI] [PubMed] [Google Scholar]
  28. Hey J. Selfish genes, pleiotropy and the origin of recombination. Genetics. 1998 Aug;149(4):2089–2097. doi: 10.1093/genetics/149.4.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  30. Hudson R. R. How can the low levels of DNA sequence variation in regions of the drosophila genome with low recombination rates be explained? Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6815–6818. doi: 10.1073/pnas.91.15.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hughes A. L., Yeager M. Comparative evolutionary rates of introns and exons in murine rodents. J Mol Evol. 1997 Aug;45(2):125–130. doi: 10.1007/pl00006211. [DOI] [PubMed] [Google Scholar]
  32. Izban M. G., Luse D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J Biol Chem. 1992 Jul 5;267(19):13647–13655. [PubMed] [Google Scholar]
  33. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kersanach R., Brinkmann H., Liaud M. F., Zhang D. X., Martin W., Cerff R. Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature. 1994 Jan 27;367(6461):387–389. doi: 10.1038/367387a0. [DOI] [PubMed] [Google Scholar]
  35. Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kirkpatrick D. T., Petes T. D. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature. 1997 Jun 26;387(6636):929–931. doi: 10.1038/43225. [DOI] [PubMed] [Google Scholar]
  37. Kliman R. M., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074. [DOI] [PubMed] [Google Scholar]
  38. Kliman R. M. Recent selection on synonymous codon usage in Drosophila. J Mol Evol. 1999 Sep;49(3):343–351. doi: 10.1007/pl00006557. [DOI] [PubMed] [Google Scholar]
  39. Kramer B., Kramer W., Williamson M. S., Fogel S. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol. 1989 Oct;9(10):4432–4440. doi: 10.1128/mcb.9.10.4432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Langley C. H., Montgomery E., Hudson R., Kaplan N., Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res. 1988 Dec;52(3):223–235. doi: 10.1017/s0016672300027695. [DOI] [PubMed] [Google Scholar]
  42. Leicht B. G., Muse S. V., Hanczyc M., Clark A. G. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. doi: 10.1093/genetics/139.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Llopart A., Aguadé M. Nucleotide polymorphism at the RpII215 gene in Drosophila subobscura. Weak selection on synonymous mutations. Genetics. 2000 Jul;155(3):1245–1252. doi: 10.1093/genetics/155.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ludwig M. Z., Kreitman M. Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol Biol Evol. 1995 Nov;12(6):1002–1011. doi: 10.1093/oxfordjournals.molbev.a040277. [DOI] [PubMed] [Google Scholar]
  46. Marchionni M., Gilbert W. The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell. 1986 Jul 4;46(1):133–141. doi: 10.1016/0092-8674(86)90867-6. [DOI] [PubMed] [Google Scholar]
  47. Moriyama E. N., Hartl D. L. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. doi: 10.1093/genetics/134.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Moriyama E. N., Petrov D. A., Hartl D. L. Genome size and intron size in Drosophila. Mol Biol Evol. 1998 Jun;15(6):770–773. doi: 10.1093/oxfordjournals.molbev.a025980. [DOI] [PubMed] [Google Scholar]
  49. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  50. Mouchiroud D., Gautier C., Bernardi G. Frequencies of synonymous substitutions in mammals are gene-specific and correlated with frequencies of nonsynonymous substitutions. J Mol Evol. 1995 Jan;40(1):107–113. doi: 10.1007/BF00166602. [DOI] [PubMed] [Google Scholar]
  51. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Nag D. K., White M. A., Petes T. D. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature. 1989 Jul 27;340(6231):318–320. doi: 10.1038/340318a0. [DOI] [PubMed] [Google Scholar]
  53. Ogata H., Fujibuchi W., Kanehisa M. The size differences among mammalian introns are due to the accumulation of small deletions. FEBS Lett. 1996 Jul 15;390(1):99–103. doi: 10.1016/0014-5793(96)00636-9. [DOI] [PubMed] [Google Scholar]
  54. Ohta T. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol. 1995 Jan;40(1):56–63. doi: 10.1007/BF00166595. [DOI] [PubMed] [Google Scholar]
  55. Ophir R., Graur D. Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene. 1997 Dec 31;205(1-2):191–202. doi: 10.1016/s0378-1119(97)00398-3. [DOI] [PubMed] [Google Scholar]
  56. Otto S. P., Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics. 1997 Oct;147(2):879–906. doi: 10.1093/genetics/147.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Petrov D. A., Hartl D. L. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998 Mar;15(3):293–302. doi: 10.1093/oxfordjournals.molbev.a025926. [DOI] [PubMed] [Google Scholar]
  58. Petrov D. A., Lozovskaya E. R., Hartl D. L. High intrinsic rate of DNA loss in Drosophila. Nature. 1996 Nov 28;384(6607):346–349. doi: 10.1038/384346a0. [DOI] [PubMed] [Google Scholar]
  59. Saitou N., Ueda S. Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol Biol Evol. 1994 May;11(3):504–512. doi: 10.1093/oxfordjournals.molbev.a040130. [DOI] [PubMed] [Google Scholar]
  60. Sambrook J. Adenovirus amazes at Cold Spring Harbor. Nature. 1977 Jul 14;268(5616):101–104. doi: 10.1038/268101a0. [DOI] [PubMed] [Google Scholar]
  61. Schmid K. J., Nigro L., Aquadro C. F., Tautz D. Large number of replacement polymorphisms in rapidly evolving genes of Drosophila. Implications for genome-wide surveys of DNA polymorphism. Genetics. 1999 Dec;153(4):1717–1729. doi: 10.1093/genetics/153.4.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Shah D. M., Hightower R. C., Meagher R. B. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet. 1983;2(1):111–126. [PubMed] [Google Scholar]
  63. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  64. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  65. Stephan W., Kirby D. A. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics. 1993 Sep;135(1):97–103. doi: 10.1093/genetics/135.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Stephan W., Rodriguez V. S., Zhou B., Parsch J. Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: results from Drosophila ananassae. Genetics. 1994 Sep;138(1):135–143. doi: 10.1093/genetics/138.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tachida H. Molecular evolution in a multisite nearly neutral mutation model. J Mol Evol. 2000 Jan;50(1):69–81. doi: 10.1007/s002399910008. [DOI] [PubMed] [Google Scholar]
  68. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Takano T. S. Rate variation of DNA sequence evolution in the Drosophila lineages. Genetics. 1998 Jun;149(2):959–970. doi: 10.1093/genetics/149.2.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Tatusova T. A., Madden T. L. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999 May 15;174(2):247–250. doi: 10.1111/j.1574-6968.1999.tb13575.x. [DOI] [PubMed] [Google Scholar]
  71. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Tsurushita N., Korn L. J. Effects of intron length on differential processing of mouse mu heavy-chain mRNA. Mol Cell Biol. 1987 Jul;7(7):2602–2605. doi: 10.1128/mcb.7.7.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Upholt W. B., Sandell L. J. Exon/intron organization of the chicken type II procollagen gene: intron size distribution suggests a minimal intron size. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2325–2329. doi: 10.1073/pnas.83.8.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Vincent A., Petes T. D. Mitotic and meiotic gene conversion of Ty elements and other insertions in Saccharomyces cerevisiae. Genetics. 1989 Aug;122(4):759–772. doi: 10.1093/genetics/122.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Vinogradov A. E. Intron-genome size relationship on a large evolutionary scale. J Mol Evol. 1999 Sep;49(3):376–384. doi: 10.1007/pl00006561. [DOI] [PubMed] [Google Scholar]
  77. Zeng L. W., Comeron J. M., Chen B., Kreitman M. The molecular clock revisited: the rate of synonymous vs. replacement change in Drosophila. Genetica. 1998;102-103(1-6):369–382. [PubMed] [Google Scholar]
  78. de Souza S. J., Long M., Gilbert W. Introns and gene evolution. Genes Cells. 1996 Jun;1(6):493–505. doi: 10.1046/j.1365-2443.1996.d01-264.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES