Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1797–1816. doi: 10.1093/genetics/156.4.1797

Toward a physical map of Drosophila buzzatii. Use of randomly amplified polymorphic dna polymorphisms and sequence-tagged site landmarks.

H Laayouni 1, M Santos 1, A Fontdevila 1
PMCID: PMC1461379  PMID: 11102375

Abstract

We present a physical map based on RAPD polymorphic fragments and sequence-tagged sites (STSs) for the repleta group species Drosophila buzzatii. One hundred forty-four RAPD markers have been used as probes for in situ hybridization to the polytene chromosomes, and positive results allowing the precise localization of 108 RAPDs were obtained. Of these, 73 behave as effectively unique markers for physical map construction, and in 9 additional cases the probes gave two hybridization signals, each on a different chromosome. Most markers (68%) are located on chromosomes 2 and 4, which partially agree with previous estimates on the distribution of genetic variation over chromosomes. One RAPD maps close to the proximal breakpoint of inversion 2z(3) but is not included within the inverted fragment. However, it was possible to conclude from this RAPD that the distal breakpoint of 2z(3) had previously been wrongly assigned. A total of 39 cytologically mapped RAPDs were converted to STSs and yielded an aggregate sequence of 28,431 bp. Thirty-six RAPDs (25%) did not produce any detectable hybridization signal, and we obtained the DNA sequence from three of them. Further prospects toward obtaining a more developed genetic map than the one currently available for D. buzzatii are discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apostol B. L., Black W. C., 4th, Reiter P., Miller B. R. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity (Edinb) 1996 Apr;76(Pt 4):325–334. doi: 10.1038/hdy.1996.50. [DOI] [PubMed] [Google Scholar]
  3. Betrán E., Quezada-Díaz J. E., Ruiz A., Santos M., Fontdevila A. The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations. Heredity (Edinb) 1995 Feb;74(Pt 2):188–199. doi: 10.1038/hdy.1995.27. [DOI] [PubMed] [Google Scholar]
  4. Cáceres M., Ranz J. M., Barbadilla A., Long M., Ruiz A. Generation of a widespread Drosophila inversion by a transposable element. Science. 1999 Jul 16;285(5426):415–418. doi: 10.1126/science.285.5426.415. [DOI] [PubMed] [Google Scholar]
  5. Dimopoulos G., Zheng L., Kumar V., della Torre A., Kafatos F. C., Louis C. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics. 1996 Jun;143(2):953–960. doi: 10.1093/genetics/143.2.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gall J. G., Cohen E. H., Polan M. L. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33(3):319–344. doi: 10.1007/BF00284948. [DOI] [PubMed] [Google Scholar]
  7. Glaser R. L., Leach T. J., Ostrowski S. E. The structure of heterochromatic DNA is altered in polyploid cells of Drosophila melanogaster. Mol Cell Biol. 1997 Mar;17(3):1254–1263. doi: 10.1128/mcb.17.3.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Halliburton R., Barker J. S. Lack of mitochondrial DNA variation in Australian Drosophila buzzatii. Mol Biol Evol. 1993 Mar;10(2):484–487. doi: 10.1093/oxfordjournals.molbev.a040014. [DOI] [PubMed] [Google Scholar]
  9. Hartl D. L., Lozovskaya E. R. Genome evolution: between the nucleosome and the chromosome. EXS. 1994;69:579–592. doi: 10.1007/978-3-0348-7527-1_34. [DOI] [PubMed] [Google Scholar]
  10. Hartl D. L., Nurminsky D. I., Jones R. W., Lozovskaya E. R. Genome structure and evolution in Drosophila: applications of the framework P1 map. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6824–6829. doi: 10.1073/pnas.91.15.6824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt G. J., Page R. E., Jr Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krebs R. A., Loeschcke V. A genetic analysis of the relationship between life-history variation and heat-shock tolerance in Drosophila buzzatii. Heredity (Edinb) 1999 Jul;83(Pt 1):46–53. doi: 10.1038/sj.hdy.6885410. [DOI] [PubMed] [Google Scholar]
  13. Krebs R. A., Loeschcke V. Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii. Genetics. 1996 Feb;142(2):471–479. doi: 10.1093/genetics/142.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krebs R. A., Loeschcke V. Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii. Heredity (Edinb) 1997 Sep;79(Pt 3):252–259. doi: 10.1038/hdy.1997.152. [DOI] [PubMed] [Google Scholar]
  15. Kress H. The salivary gland chromosomes of Drosophila virilis: a cytological map, pattern of transcription and aspects of chromosome evolution. Chromosoma. 1993 Dec;102(10):734–742. doi: 10.1007/BF00650901. [DOI] [PubMed] [Google Scholar]
  16. Labrador M., Naveira H., Fontdevila A. Genetic mapping of the Adh locus in the repleta group of Drosophila by in situ hybridization. J Hered. 1990 Jan-Feb;81(1):83–86. doi: 10.1093/oxfordjournals.jhered.a110934. [DOI] [PubMed] [Google Scholar]
  17. Laird C. D. DNA of Drosophila chromosomes. Annu Rev Genet. 1973;7:177–204. doi: 10.1146/annurev.ge.07.120173.001141. [DOI] [PubMed] [Google Scholar]
  18. Latorre A., Moya A., Ayala F. J. Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8649–8653. doi: 10.1073/pnas.83.22.8649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leibowitz A., Santos M., Fontdevila A. Heritability and selection on body size in a natural population of Drosophila buzzatii. Genetics. 1995 Sep;141(1):181–189. doi: 10.1093/genetics/141.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Louis C., Madueño E., Modolell J., Omar M. M., Papagiannakis G., Saunders R. D., Savakis C., Sidén-Kiamos I., Spanos L., Topalis P. One-hundred and five new potential Drosophila melanogaster genes revealed through STS analysis. Gene. 1997 Aug 22;195(2):187–193. doi: 10.1016/s0378-1119(97)00138-8. [DOI] [PubMed] [Google Scholar]
  21. Menotti-Raymond M., Starmer W. T., Sullivan D. T. Characterization of the structure and evolution of the Adh region of Drosophila hydei. Genetics. 1991 Feb;127(2):355–366. doi: 10.1093/genetics/127.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Naveira H., Fontdevila A. The Evolutionary History of DROSOPHILA BUZZATII. Xii. the Genetic Basis of Sterility in Hybrids between D. BUZZATII and Its Sibling D. SERIDO from Argentina. Genetics. 1986 Nov;114(3):841–857. doi: 10.1093/genetics/114.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naveira H., Fontdevila A. The evolutionary history of D. buzzatii. XXII. Chromosomal and genic sterility in male hybrids of Drosophila buzzatii and Drosophila koepferae. Heredity (Edinb) 1991 Apr;66(Pt 2):233–239. doi: 10.1038/hdy.1991.29. [DOI] [PubMed] [Google Scholar]
  24. Naveira H., Fontdevila A. The evolutionary history of D. buzzatii. XXII. Chromosomal and genic sterility in male hybrids of Drosophila buzzatii and Drosophila koepferae. Heredity (Edinb) 1991 Apr;66(Pt 2):233–239. doi: 10.1038/hdy.1991.29. [DOI] [PubMed] [Google Scholar]
  25. Olson M., Hood L., Cantor C., Botstein D. A common language for physical mapping of the human genome. Science. 1989 Sep 29;245(4925):1434–1435. doi: 10.1126/science.2781285. [DOI] [PubMed] [Google Scholar]
  26. Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
  27. Prout T., Barker J. S. Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics. 1989 Dec;123(4):803–813. doi: 10.1093/genetics/123.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quezada-Díaz J. E., Santos M., Ruiz A., Fontdevila A. The evolutionary history of Drosophila buzzatii. XXV. Random mating in nature. Heredity (Edinb) 1992 Apr;68(Pt 4):373–379. doi: 10.1038/hdy.1992.53. [DOI] [PubMed] [Google Scholar]
  29. Ranz J. M., Cáceres M., Ruiz A. Comparative mapping of cosmids and gene clones from a 1.6 Mb chromosomal region of Drosophila melanogaster in three species of the distantly related subgenus Drosophila. Chromosoma. 1999 Apr;108(1):32–43. doi: 10.1007/s004120050349. [DOI] [PubMed] [Google Scholar]
  30. Ranz J. M., Segarra C., Ruiz A. Chromosomal homology and molecular organization of Muller's elements D and E in the Drosophila repleta species group. Genetics. 1997 Feb;145(2):281–295. doi: 10.1093/genetics/145.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reiter R. S., Williams J. G., Feldmann K. A., Rafalski J. A., Tingey S. V., Scolnik P. A. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1477–1481. doi: 10.1073/pnas.89.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rossi M. S., Barrio E., Latorre A., Quezada-Díaz J. E., Hasson E., Moya A., Fontdevila A. The evolutionary history of Drosophila buzzatii. XXX. Mitochondrial DNA polymorphism in original and colonizing populations. Mol Biol Evol. 1996 Feb;13(2):314–323. doi: 10.1093/oxfordjournals.molbev.a025591. [DOI] [PubMed] [Google Scholar]
  33. Ruiz A., Santos M., Barbadilla A., Quezada-Díaz J. E., Hasson E., Fontdevila A. Genetic variance for body size in a natural population of Drosophila buzzatii. Genetics. 1991 Aug;128(4):739–750. doi: 10.1093/genetics/128.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruiz A., Wasserman M. Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity (Edinb) 1993 Jun;70(Pt 6):582–596. doi: 10.1038/hdy.1993.85. [DOI] [PubMed] [Google Scholar]
  35. Ruiz A., Wasserman M. The Evolutionary History of DROSOPHILA BUZZATII. III. Cytogenetic Relationships between Two Sibling Species of the Buzzatii Cluster. Genetics. 1982 Jul;101(3-4):503–518. doi: 10.1093/genetics/101.3-4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schafer D. J., Fredline D. K., Knibb W. R., Green M. M., Barker J. S. Genetics and linkage mapping of Drosophila buzzatii. J Hered. 1993 May-Jun;84(3):188–194. doi: 10.1093/oxfordjournals.jhered.a111315. [DOI] [PubMed] [Google Scholar]
  38. Segarra C., Lozovskaya E. R., Ribó G., Aguadé M., Hartl D. L. P1 clones from Drosophila melanogaster as markers to study the chromosomal evolution of Muller's A element in two species of the obscura group of Drosophila. Chromosoma. 1995 Nov;104(2):129–136. doi: 10.1007/BF00347695. [DOI] [PubMed] [Google Scholar]
  39. Segarra C., Ribó G., Aguadé M. Differentiation of Muller's chromosomal elements D and E in the obscura group of Drosophila. Genetics. 1996 Sep;144(1):139–146. doi: 10.1093/genetics/144.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith J. J., Scott-Craig J. S., Leadbetter J. R., Bush G. L., Roberts D. L., Fulbright D. W. Characterization of random amplified polymorphic DNA (RAPD) products from Xanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Mol Phylogenet Evol. 1994 Jun;3(2):135–145. doi: 10.1006/mpev.1994.1016. [DOI] [PubMed] [Google Scholar]
  41. Sullivan D. T., Starmer W. T., Curtiss S. W., Menotti-Raymond M., Yum J. Unusual molecular evolution of an Adh pseudogene in Drosophila. Mol Biol Evol. 1994 May;11(3):443–458. doi: 10.1093/oxfordjournals.molbev.a040125. [DOI] [PubMed] [Google Scholar]
  42. Thomas R. H., Barker J. S. Breeding structure of natural populations of Drosophila buzzatii: effects of the distribution of larval substrates. Heredity (Edinb) 1990 Jun;64(Pt 3):355–365. doi: 10.1038/hdy.1990.44. [DOI] [PubMed] [Google Scholar]
  43. Vieira J., Vieira C. P., Hartl D. L., Lozovskaya E. R. Discordant rates of chromosome evolution in the Drosophila virilis species group. Genetics. 1997 Sep;147(1):223–230. doi: 10.1093/genetics/147.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Von Allmen G., Hogga I., Spierer A., Karch F., Bender W., Gyurkovics H., Lewis E. Splits in fruitfly Hox gene complexes. Nature. 1996 Mar 14;380(6570):116–116. doi: 10.1038/380116a0. [DOI] [PubMed] [Google Scholar]
  45. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zouros E. The distribution of enzyme and inversion polymorphism over the genome of Drosophila: evidence against balancing selection. Genetics. 1976 May;83(1):169–179. doi: 10.1093/genetics/83.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES