Skip to main content
Genetics logoLink to Genetics
. 2000 Dec;156(4):1585–1594. doi: 10.1093/genetics/156.4.1585

Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction.

T J Fowler 1, M F Mitton 1
PMCID: PMC1461387  PMID: 11102359

Abstract

Two copies of scooter, a DNA-mediated transposon in the basidiomycetous fungus Schizophyllum commune, were characterized. Scooter is the first transposon isolated from S. commune. Scooter creates 8-bp target site duplications, comparable to members of the hAT superfamily, and has 32-bp terminal inverted repeats. Both copies of scooter are nonautonomous elements capable of movement. Southern blot hybridizations show that scooter-related sequences are present in all S. commune strains tested. Scooter-1 was identified initially as an insertion in the Bbeta2 pheromone receptor gene, bbr2, leading to a partial defect in mating. Scooter-2 spontaneously disrupted a gene to produce the frequently occurring morphological mutant phenotype known as thin. The scooter-2 insert permitted cloning of the disrupted gene, thn1, which encodes a putative regulator of G protein signaling (RGS) protein. Spontaneous insertion of scooter into genes with identifiable mutant phenotypes constitutes the first evidence of active transposition of a DNA-mediated transposon in a basidiomycete.

Full Text

The Full Text of this article is available as a PDF (650.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., Wieser J. K., Yu J. H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998 Mar;62(1):35–54. doi: 10.1128/mmbr.62.1.35-54.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berman D. M., Kozasa T., Gilman A. G. The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem. 1996 Nov 1;271(44):27209–27212. doi: 10.1074/jbc.271.44.27209. [DOI] [PubMed] [Google Scholar]
  4. Berman D. M., Wilkie T. M., Gilman A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell. 1996 Aug 9;86(3):445–452. doi: 10.1016/s0092-8674(00)80117-8. [DOI] [PubMed] [Google Scholar]
  5. Calvi B. R., Hong T. J., Findley S. D., Gelbart W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 1991 Aug 9;66(3):465–471. doi: 10.1016/0092-8674(81)90010-6. [DOI] [PubMed] [Google Scholar]
  6. Chan R. K., Otte C. A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):11–20. doi: 10.1128/mcb.2.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colot V., Haedens V., Rossignol J. L. Extensive, nonrandom diversity of excision footprints generated by Ds-like transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol Cell Biol. 1998 Jul;18(7):4337–4346. doi: 10.1128/mcb.18.7.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Vries L., Mousli M., Wurmser A., Farquhar M. G. GAIP, a protein that specifically interacts with the trimeric G protein G alpha i3, is a member of a protein family with a highly conserved core domain. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11916–11920. doi: 10.1073/pnas.92.25.11916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietzel C., Kurjan J. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol Cell Biol. 1987 Dec;7(12):4169–4177. doi: 10.1128/mcb.7.12.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Döring H. P., Tillmann E., Starlinger P. DNA sequence of the maize transposable element Dissociation. Nature. 1984 Jan 12;307(5947):127–130. doi: 10.1038/307127a0. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Finnegan D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989 Apr;5(4):103–107. doi: 10.1016/0168-9525(89)90039-5. [DOI] [PubMed] [Google Scholar]
  13. Fowler T. J., DeSimone S. M., Mitton M. F., Kurjan J., Raper C. A. Multiple sex pheromones and receptors of a mushroom-producing fungus elicit mating in yeast. Mol Biol Cell. 1999 Aug;10(8):2559–2572. doi: 10.1091/mbc.10.8.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gaskell J., Van den Wymelenberg A., Cullen D. Structure, inheritance, and transcriptional effects of Pce1, an insertional element within Phanerochaete chrysosporium lignin peroxidase gene lipI. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7465–7469. doi: 10.1073/pnas.92.16.7465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gómez-Gómez E., Anaya N., Roncero M. I., Hera C. Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum. Fungal Genet Biol. 1999 Jun;27(1):67–76. doi: 10.1006/fgbi.1999.1132. [DOI] [PubMed] [Google Scholar]
  16. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hepler J. R., Berman D. M., Gilman A. G., Kozasa T. RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):428–432. doi: 10.1073/pnas.94.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hicks J. K., Yu J. H., Keller N. P., Adams T. H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 1997 Aug 15;16(16):4916–4923. doi: 10.1093/emboj/16.16.4916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horton J. S., Raper C. A. Pulsed-field gel electrophoretic analysis of Schizophyllum commune chromosomal DNA. Curr Genet. 1991 Feb;19(2):77–80. doi: 10.1007/BF00326286. [DOI] [PubMed] [Google Scholar]
  20. Horton J. S., Raper C. A. The mushroom-inducing gene Frt1 of Schizophyllum commune encodes a putative nucleotide-binding protein. Mol Gen Genet. 1995 May 10;247(3):358–366. doi: 10.1007/BF00293204. [DOI] [PubMed] [Google Scholar]
  21. Kempken F., Kück U. Tagging of a nitrogen pathway-specific regulator gene in Tolypocladium inflatum by the transposon Restless. Mol Gen Genet. 2000 Mar;263(2):302–308. doi: 10.1007/s004380051172. [DOI] [PubMed] [Google Scholar]
  22. Kempken F., Kück U. Transposons in filamentous fungi--facts and perspectives. Bioessays. 1998 Aug;20(8):652–659. doi: 10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  23. Koltin Y., Flexer A. S. Alteration of nuclear distribution in B-mutant strains of Schizophyllum commune. J Cell Sci. 1969 May;4(3):739–749. doi: 10.1242/jcs.4.3.739. [DOI] [PubMed] [Google Scholar]
  24. Kunze R., Starlinger P. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 1989 Nov;8(11):3177–3185. doi: 10.1002/j.1460-2075.1989.tb08476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee B. N., Adams T. H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol. 1994 Oct;14(2):323–334. doi: 10.1111/j.1365-2958.1994.tb01293.x. [DOI] [PubMed] [Google Scholar]
  26. McCLINTOCK B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 1950 Jun;36(6):344–355. doi: 10.1073/pnas.36.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PARAG Y. Mutations in the B incompatibility factor of Schizophyllum commune. Proc Natl Acad Sci U S A. 1962 May 15;48:743–750. doi: 10.1073/pnas.48.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RAPER J. R., SAN ANTONIO J. P., MILES P. G. The expression of mutations in common-A heterokaryons of Schizophyllum commune. Z Vererbungsl. 1958;89(4):540–558. doi: 10.1007/BF00889087. [DOI] [PubMed] [Google Scholar]
  29. Raper J R, Miles P G. The Genetics of Schizophyllum Commune. Genetics. 1958 May;43(3):530–546. doi: 10.1093/genetics/43.3.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raper J. R., Boyd D. H., Raper C. A. Primary and secondary mutations at the incompatibility loci in Schizophyllum. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1324–1332. doi: 10.1073/pnas.53.6.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sato K., Taura M., Morimoto I., Ishimaru T., Izumi M., Usa T. [A case of hypomagnesemia with tetany and convulsion (author's transl)]. Nihon Naika Gakkai Zasshi. 1981 Oct 10;70(10):1427–1431. [PubMed] [Google Scholar]
  33. Sonnenberg A. S., Baars J. J., Mikosch T. S., Schaap P. J., Van Griensven L. J. Abr1, a transposon-like element in the genome of the cultivated mushroom Agaricus bisporus (Lange) Imbach. Appl Environ Microbiol. 1999 Aug;65(8):3347–3353. doi: 10.1128/aem.65.8.3347-3353.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Streck R. D., Macgaffey J. E., Beckendorf S. K. The structure of hobo transposable elements and their insertion sites. EMBO J. 1986 Dec 20;5(13):3615–3623. doi: 10.1002/j.1460-2075.1986.tb04690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vaillancourt L. J., Raudaskoski M., Specht C. A., Raper C. A. Multiple genes encoding pheromones and a pheromone receptor define the B beta 1 mating-type specificity in Schizophyllum commune. Genetics. 1997 Jun;146(2):541–551. doi: 10.1093/genetics/146.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wendland J., Vaillancourt L. J., Hegner J., Lengeler K. B., Laddison K. J., Specht C. A., Raper C. A., Kothe E. The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J. 1995 Nov 1;14(21):5271–5278. doi: 10.1002/j.1460-2075.1995.tb00211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wessels J. G., de Vries O. M., Asgeirsdóttir S. A., Springer J. The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J Gen Microbiol. 1991 Oct;137(10):2439–2445. doi: 10.1099/00221287-137-10-2439. [DOI] [PubMed] [Google Scholar]
  38. Yu J. H., Rosén S., Adams T. H. Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics. 1999 Jan;151(1):97–105. doi: 10.1093/genetics/151.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yu J. H., Wieser J., Adams T. H. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 1996 Oct 1;15(19):5184–5190. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES