Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):53–61. doi: 10.1093/genetics/157.1.53

Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae.

C Zeyl 1, J A DeVisser 1
PMCID: PMC1461475  PMID: 11139491

Abstract

The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (approximately 600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 x 10(-5) and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 < or = U < or = 0.94 and 0.049 > or = sh > or = 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude.

Full Text

The Full Text of this article is available as a PDF (263.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arjan J. A., Visser M., Zeyl C. W., Gerrish P. J., Blanchard J. L., Lenski R. E. Diminishing returns from mutation supply rate in asexual populations. Science. 1999 Jan 15;283(5400):404–406. doi: 10.1126/science.283.5400.404. [DOI] [PubMed] [Google Scholar]
  2. Brown P. A., Szostak J. W. Yeast vectors with negative selection. Methods Enzymol. 1983;101:278–290. doi: 10.1016/0076-6879(83)01021-6. [DOI] [PubMed] [Google Scholar]
  3. Burns N., Grimwade B., Ross-Macdonald P. B., Choi E. Y., Finberg K., Roeder G. S., Snyder M. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 1994 May 1;8(9):1087–1105. doi: 10.1101/gad.8.9.1087. [DOI] [PubMed] [Google Scholar]
  4. Caballero A., Keightley P. D. Inferences on genome-wide deleterious mutation rates in inbred populations of Drosophila and mice. Genetica. 1998;102-103(1-6):229–239. [PubMed] [Google Scholar]
  5. Davies E. K., Peters A. D., Keightley P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science. 1999 Sep 10;285(5434):1748–1751. doi: 10.1126/science.285.5434.1748. [DOI] [PubMed] [Google Scholar]
  6. Fernández J., López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fry J. D., Keightley P. D., Heinsohn S. L., Nuzhdin S. V. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574–579. doi: 10.1073/pnas.96.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. García-Dorado A., López-Fanjul C., Caballero A. Properties of spontaneous mutations affecting quantitative traits. Genet Res. 1999 Dec;74(3):341–350. doi: 10.1017/s0016672399004206. [DOI] [PubMed] [Google Scholar]
  9. Goebl M. G., Petes T. D. Most of the yeast genomic sequences are not essential for cell growth and division. Cell. 1986 Sep 26;46(7):983–992. doi: 10.1016/0092-8674(86)90697-5. [DOI] [PubMed] [Google Scholar]
  10. Hampsey M. A review of phenotypes in Saccharomyces cerevisiae. Yeast. 1997 Sep 30;13(12):1099–1133. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1099::AID-YEA177>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  11. Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keightley P. D. Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics. 1998 Nov;150(3):1283–1293. doi: 10.1093/genetics/150.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keightley P. D. Nature of deleterious mutation load in Drosophila. Genetics. 1996 Dec;144(4):1993–1999. doi: 10.1093/genetics/144.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
  17. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  18. Kondrashov A. S., Houle D. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc Biol Sci. 1994 Dec 22;258(1353):221–227. doi: 10.1098/rspb.1994.0166. [DOI] [PubMed] [Google Scholar]
  19. Kondrashov A. S. Measuring spontaneous deleterious mutation process. Genetica. 1998;102-103(1-6):183–197. [PubMed] [Google Scholar]
  20. Korona R. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics. 1999 Jan;151(1):77–85. doi: 10.1093/genetics/151.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  22. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ohnishi O. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics. 1977 Nov;87(3):529–545. doi: 10.1093/genetics/87.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schultz S. T., Lynch M., Willis J. H. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11393–11398. doi: 10.1073/pnas.96.20.11393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  26. Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
  27. Thatcher J. W., Shaw J. M., Dickinson W. J. Marginal fitness contributions of nonessential genes in yeast. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):253–257. doi: 10.1073/pnas.95.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vassilieva L. L., Lynch M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics. 1999 Jan;151(1):119–129. doi: 10.1093/genetics/151.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zeyl C. Budding yeast as a model organism for population genetics. Yeast. 2000 Jun 15;16(8):773–784. doi: 10.1002/1097-0061(20000615)16:8<773::AID-YEA599>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES