Skip to main content
Genetics logoLink to Genetics
. 2001 Mar;157(3):1285–1292. doi: 10.1093/genetics/157.3.1285

Molecular nature of 11 spontaneous de novo mutations in Drosophila melanogaster.

H P Yang 1, A Y Tanikawa 1, A S Kondrashov 1
PMCID: PMC1461551  PMID: 11238412

Abstract

To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.

Full Text

The Full Text of this article is available as a PDF (262.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi H. Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene. 1997 Dec 31;205(1-2):269–278. doi: 10.1016/s0378-1119(97)00400-9. [DOI] [PubMed] [Google Scholar]
  2. Bauer V. L., Aquadro C. F. Rates of DNA sequence evolution are not sex-biased in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1997 Dec;14(12):1252–1257. doi: 10.1093/oxfordjournals.molbev.a025734. [DOI] [PubMed] [Google Scholar]
  3. Clough M. V., Hamlington J. D., McIntosh I. Restricted distribution of loss-of-function mutations within the LMX1B genes of nail-patella syndrome patients. Hum Mutat. 1999;14(6):459–465. doi: 10.1002/(SICI)1098-1004(199912)14:6<459::AID-HUMU3>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  4. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drost J. B., Lee W. R. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25 (Suppl 26):48–64. doi: 10.1002/em.2850250609. [DOI] [PubMed] [Google Scholar]
  6. Eyre-Walker A., Keightley P. D. High genomic deleterious mutation rates in hominids. Nature. 1999 Jan 28;397(6717):344–347. doi: 10.1038/16915. [DOI] [PubMed] [Google Scholar]
  7. Giannelli F., Green P. M., Sommer S. S., Poon M., Ludwig M., Schwaab R., Reitsma P. H., Goossens M., Yoshioka A., Figueiredo M. S. Haemophilia B: database of point mutations and short additions and deletions--eighth edition. Nucleic Acids Res. 1998 Jan 1;26(1):265–268. doi: 10.1093/nar/26.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harada K., Kusakabe S., Yamazaki T., Mukai T. Spontaneous mutation rates in null and band-morph mutations of enzyme loci in Drosophila melanogaster. Jpn J Genet. 1993 Dec;68(6):605–616. doi: 10.1266/jjg.68.605. [DOI] [PubMed] [Google Scholar]
  9. Kim N., Kim J., Park D., Rosen C., Dorsett D., Yim J. Structure and expression of wild-type and suppressible alleles of the Drosophila purple gene. Genetics. 1996 Apr;142(4):1157–1168. doi: 10.1093/genetics/142.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  11. Kondrashov A. S. Measuring spontaneous deleterious mutation process. Genetica. 1998;102-103(1-6):183–197. [PubMed] [Google Scholar]
  12. Krantz I. D., Colliton R. P., Genin A., Rand E. B., Li L., Piccoli D. A., Spinner N. B. Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families. Am J Hum Genet. 1998 Jun;62(6):1361–1369. doi: 10.1086/301875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krawczak M., Ball E. V., Fenton I., Stenson P. D., Abeysinghe S., Thomas N., Cooper D. N. Human gene mutation database-a biomedical information and research resource. Hum Mutat. 2000;15(1):45–51. doi: 10.1002/(SICI)1098-1004(200001)15:1<45::AID-HUMU10>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  14. Lemahieu V., Gastier J. M., Francke U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum Mutat. 1999;14(1):54–66. doi: 10.1002/(SICI)1098-1004(1999)14:1<54::AID-HUMU7>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  15. Lohmann D. R. RB1 gene mutations in retinoblastoma. Hum Mutat. 1999;14(4):283–288. doi: 10.1002/(SICI)1098-1004(199910)14:4<283::AID-HUMU2>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  16. Lyko F., Ramsahoye B. H., Kashevsky H., Tudor M., Mastrangelo M. A., Orr-Weaver T. L., Jaenisch R. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat Genet. 1999 Nov;23(3):363–366. doi: 10.1038/15551. [DOI] [PubMed] [Google Scholar]
  17. Martin-Morris L. E., Loughney K., Kershisnik E. O., Poortinga G., Henikoff S. Characterization of sequences responsible for trans-inactivation of the Drosophila brown gene. Cold Spring Harb Symp Quant Biol. 1993;58:577–584. doi: 10.1101/sqb.1993.058.01.064. [DOI] [PubMed] [Google Scholar]
  18. Mayer K., Ballhausen W., Rott H. D. Mutation screening of the entire coding regions of the TSC1 and the TSC2 gene with the protein truncation test (PTT) identifies frequent splicing defects. Hum Mutat. 1999;14(5):401–411. doi: 10.1002/(SICI)1098-1004(199911)14:5<401::AID-HUMU6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  19. Mukai T., Cockerham C. C. Spontaneous mutation rates at enzyme loci in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2514–2517. doi: 10.1073/pnas.74.6.2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nachman M. W., Crowell S. L. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000 Sep;156(1):297–304. doi: 10.1093/genetics/156.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Niida Y., Lawrence-Smith N., Banwell A., Hammer E., Lewis J., Beauchamp R. L., Sims K., Ramesh V., Ozelius L. Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum Mutat. 1999;14(5):412–422. doi: 10.1002/(SICI)1098-1004(199911)14:5<412::AID-HUMU7>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  22. Nitasaka E., Yamazaki T., Green M. M. The molecular analysis of brown eye color mutations isolated from geographically discrete populations of Drosophila melanogaster. Mol Gen Genet. 1995 Apr 20;247(2):164–168. doi: 10.1007/BF00705646. [DOI] [PubMed] [Google Scholar]
  23. O'Hare K., Murphy C., Levis R., Rubin G. M. DNA sequence of the white locus of Drosophila melanogaster. J Mol Biol. 1984 Dec 15;180(3):437–455. doi: 10.1016/0022-2836(84)90021-4. [DOI] [PubMed] [Google Scholar]
  24. Petrov D. A., Hartl D. L. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998 Mar;15(3):293–302. doi: 10.1093/oxfordjournals.molbev.a025926. [DOI] [PubMed] [Google Scholar]
  25. Petrov D. A., Hartl D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475–1479. doi: 10.1073/pnas.96.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petrov D. A., Lozovskaya E. R., Hartl D. L. High intrinsic rate of DNA loss in Drosophila. Nature. 1996 Nov 28;384(6607):346–349. doi: 10.1038/384346a0. [DOI] [PubMed] [Google Scholar]
  27. Prosser J., van Heyningen V. PAX6 mutations reviewed. Hum Mutat. 1998;11(2):93–108. doi: 10.1002/(SICI)1098-1004(1998)11:2<93::AID-HUMU1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  28. Russell L. B., Russell W. L. Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13072–13077. doi: 10.1073/pnas.93.23.13072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Searles L. L., Ruth R. S., Pret A. M., Fridell R. A., Ali A. J. Structure and transcription of the Drosophila melanogaster vermilion gene and several mutant alleles. Mol Cell Biol. 1990 Apr;10(4):1423–1431. doi: 10.1128/mcb.10.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shabalina S. A., Kondrashov A. S. Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet Res. 1999 Aug;74(1):23–30. doi: 10.1017/s0016672399003821. [DOI] [PubMed] [Google Scholar]
  31. Tearle R. G., Belote J. M., McKeown M., Baker B. S., Howells A. J. Cloning and characterization of the scarlet gene of Drosophila melanogaster. Genetics. 1989 Jul;122(3):595–606. doi: 10.1093/genetics/122.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teng D. H., Bender L. B., Engele C. M., Tsubota S., Venkatesh T. Isolation and characterization of the prune locus of Drosophila melanogaster. Genetics. 1991 Jun;128(2):373–380. doi: 10.1093/genetics/128.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thompson J. N., Jr, Woodruff R. C., Huai H. Mutation rate: a simple concept has become complex. Environ Mol Mutagen. 1998;32(4):292–300. doi: 10.1002/(sici)1098-2280(1998)32:4<292::aid-em2>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  34. Tuffery-Giraud S., Chambert S., Demaille J., Claustres M. Point mutations in the dystrophin gene: evidence for frequent use of cryptic splice sites as a result of splicing defects. Hum Mutat. 1999;14(5):359–368. doi: 10.1002/(SICI)1098-1004(199911)14:5<359::AID-HUMU1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  35. Voelker R. A., Schaffer H. E., Mukai T. Spontaneous Allozyme Mutations in DROSOPHILA MELANOGASTER: Rate of Occurrence and Nature of the Mutants. Genetics. 1980 Apr;94(4):961–968. doi: 10.1093/genetics/94.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Warren W. D., Palmer S., Howells A. J. Molecular characterization of the cinnabar region of Drosophila melanogaster: identification of the cinnabar transcription unit. Genetica. 1996;98(3):249–262. doi: 10.1007/BF00057589. [DOI] [PubMed] [Google Scholar]
  37. Westerman A. M., Entius M. M., Boor P. P., Koole R., de Baar E., Offerhaus G. J., Lubinski J., Lindhout D., Halley D. J., de Rooij F. W. Novel mutations in the LKB1/STK11 gene in Dutch Peutz-Jeghers families. Hum Mutat. 1999;13(6):476–481. doi: 10.1002/(SICI)1098-1004(1999)13:6<476::AID-HUMU7>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  38. Yamaguchi Y., Takano T. S., Yamazaki T., Harada K. Molecular analysis of Gpdh null mutations that arose in mutation accumulation experiments in Drosophila melanogaster. Heredity (Edinb) 1994 Oct;73(Pt 4):397–404. doi: 10.1038/hdy.1994.187. [DOI] [PubMed] [Google Scholar]
  39. ten Have J. F., Green M. M., Howells A. J. Molecular characterization of spontaneous mutations at the scarlet locus of Drosophila melanogaster. Mol Gen Genet. 1995 Dec 20;249(6):673–681. doi: 10.1007/BF00418037. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES