Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1789–1803. doi: 10.1093/genetics/157.4.1789

Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits.

A B Korol 1, Y I Ronin 1, A M Itskovich 1, J Peng 1, E Nevo 1
PMCID: PMC1461583  PMID: 11290731

Abstract

An approach to increase the efficiency of mapping quantitative trait loci (QTL) was proposed earlier by the authors on the basis of bivariate analysis of correlated traits. The power of QTL detection using the log-likelihood ratio (LOD scores) grows proportionally to the broad sense heritability. We found that this relationship holds also for correlated traits, so that an increased bivariate heritability implicates a higher LOD score, higher detection power, and better mapping resolution. However, the increased number of parameters to be estimated complicates the application of this approach when a large number of traits are considered simultaneously. Here we present a multivariate generalization of our previous two-trait QTL analysis. The proposed multivariate analogue of QTL contribution to the broad-sense heritability based on interval-specific calculation of eigenvalues and eigenvectors of the residual covariance matrix allows prediction of the expected QTL detection power and mapping resolution for any subset of the initial multivariate trait complex. Permutation technique allows chromosome-wise testing of significance for the whole trait complex and the significance of the contribution of individual traits owing to: (a) their correlation with other traits, (b) dependence on the chromosome in question, and (c) both a and b. An example of application of the proposed method on a real data set of 11 traits from an experiment performed on an F(2)/F(3) mapping population of tetraploid wheat (Triticum durum x T. dicoccoides) is provided.

Full Text

The Full Text of this article is available as a PDF (450.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. B., Thiel B., St Jean P., Elston R. C., Infante M. C., Schork N. J. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am J Hum Genet. 1998 Oct;63(4):1190–1201. doi: 10.1086/302038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almasy L., Dyer T. D., Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol. 1997;14(6):953–958. doi: 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  3. Amos C. I., Elston R. C., Bonney G. E., Keats B. J., Berenson G. S. A multivariate method for detecting genetic linkage, with application to a pedigree with an adverse lipoprotein phenotype. Am J Hum Genet. 1990 Aug;47(2):247–254. [PMC free article] [PubMed] [Google Scholar]
  4. Bernacchi D., Tanksley S. D. An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics. 1997 Oct;147(2):861–877. doi: 10.1093/genetics/147.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Damerval C., Maurice A., Josse J. M., de Vienne D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics. 1994 May;137(1):289–301. doi: 10.1093/genetics/137.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darvasi A., Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997 Mar;27(2):125–132. doi: 10.1023/a:1025685324830. [DOI] [PubMed] [Google Scholar]
  7. Darvasi A., Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics. 1994 Dec;138(4):1365–1373. doi: 10.1093/genetics/138.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henshall J. M., Goddard M. E. Multiple-trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics. 1999 Feb;151(2):885–894. doi: 10.1093/genetics/151.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korol' A. B., Preigel' I. A., Bocharnikova N. I. Stseplenie mezhdu lokusami kolichestvennykh priznakov i markernymi lokusami. Soobshchenie V. Sovmestnyi analiz neskol'kikh markernykh i kolichestvennykh priznakov. Genetika. 1987 Aug;23(8):1421–1431. [PubMed] [Google Scholar]
  14. Korol A. B., Ronin Y. I., Kirzhner V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995 Jul;140(3):1137–1147. doi: 10.1093/genetics/140.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korol A. B., Ronin Y. I., Kirzhner V. M. Linkage between quantitative trait loci and marker loci: resolution power of three statistical approaches in single marker analysis. Biometrics. 1996 Jun;52(2):426–441. [PubMed] [Google Scholar]
  16. Korol A. B., Ronin Y. I., Nevo E. Approximate analysis of QTL-environment interaction with no limits on the number of environments. Genetics. 1998 Apr;148(4):2015–2028. doi: 10.1093/genetics/148.4.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lande R., Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics. 1990 Mar;124(3):743–756. doi: 10.1093/genetics/124.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lebreton C. M., Visscher P. M., Haley C. S., Semikhodskii A., Quarrie S. A. A nonparametric bootstrap method for testing close linkage vs. pleiotropy of coincident quantitative trait loci. Genetics. 1998 Oct;150(2):931–943. doi: 10.1093/genetics/150.2.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mansfield T. A., Simon D. B., Farfel Z., Bia M., Tucci J. R., Lebel M., Gutkin M., Vialettes B., Christofilis M. A., Kauppinen-Makelin R. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet. 1997 Jun;16(2):202–205. doi: 10.1038/ng0697-202. [DOI] [PubMed] [Google Scholar]
  20. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olson J. M., Rao S., Jacobs K., Elston R. C. Linkage of chromosome 1 markers to alcoholism-related phenotypes by sib pair linkage analysis of principal components. Genet Epidemiol. 1999;17 (Suppl 1):S271–S276. doi: 10.1002/gepi.1370170746. [DOI] [PubMed] [Google Scholar]
  22. Peng J., Korol A. B., Fahima T., Röder M. S., Ronin Y. I., Li Y. C., Nevo E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 2000 Oct;10(10):1509–1531. doi: 10.1101/gr.150300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Plomin R., Craig I. Human behavioural genetics of cognitive abilities and disabilities. Bioessays. 1997 Dec;19(12):1117–1124. doi: 10.1002/bies.950191211. [DOI] [PubMed] [Google Scholar]
  24. Ronin Y. I., Korol A. B., Nevo E. Single- and multiple-trait mapping analysis of linked quantitative trait loci. Some asymptotic analytical approximations. Genetics. 1999 Jan;151(1):387–396. doi: 10.1093/genetics/151.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schork N. J., Weder A. B., Trevisan M., Laurenzi M. The contribution of pleiotropy to blood pressure and body-mass index variation: the Gubbio Study. Am J Hum Genet. 1994 Feb;54(2):361–373. [PMC free article] [PubMed] [Google Scholar]
  26. Shook D. R., Johnson T. E. Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics. 1999 Nov;153(3):1233–1243. doi: 10.1093/genetics/153.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Visscher P. M., Haley C. S., Thompson R. Marker-assisted introgression in backcross breeding programs. Genetics. 1996 Dec;144(4):1923–1932. doi: 10.1093/genetics/144.4.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wehner J. M., Radcliffe R. A., Rosmann S. T., Christensen S. C., Rasmussen D. L., Fulker D. W., Wiles M. Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet. 1997 Nov;17(3):331–334. doi: 10.1038/ng1197-331. [DOI] [PubMed] [Google Scholar]
  30. Weller J. I., Song J. Z., Heyen D. W., Lewin H. A., Ron M. A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genetics. 1998 Dec;150(4):1699–1706. doi: 10.1093/genetics/150.4.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams J. T., Van Eerdewegh P., Almasy L., Blangero J. Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet. 1999 Oct;65(4):1134–1147. doi: 10.1086/302570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wright F. A., Kong A. Linkage mapping in experimental crosses: the robustness of single-gene models. Genetics. 1997 May;146(1):417–425. doi: 10.1093/genetics/146.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wu W. R., Li W. M., Tang D. Z., Lu H. R., Worland A. J. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics. 1999 Jan;151(1):297–303. doi: 10.1093/genetics/151.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xiao J., Li J., Yuan L., Tanksley S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES