Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):451–461. doi: 10.1093/genetics/158.1.451

A test for transvection in plants: DNA pairing may lead to trans-activation or silencing of complex heteroalleles in tobacco.

M Matzke 1, M F Mette 1, J Jakowitsch 1, T Kanno 1, E A Moscone 1, J van der Winden 1, A J Matzke 1
PMCID: PMC1461637  PMID: 11333252

Abstract

To study whether DNA pairing that influences gene expression can take place in somatic plant cells, a system designed to mimic transvection was established in transgenic tobacco. Pairing was evaluated by testing whether an enhancerless GUS gene on one allele could be activated in trans by an enhancer on the second allele. The required heteroalleles were obtained at four genomic locations using Cre-lox-mediated recombination. In one transgenic line, elevated GUS activity was observed with the heteroallelic combination, suggesting that trans-activation occurred. Conversely, when the unaltered allele was homozygous, GUS activity dropped to hemizygous levels in a silencing phenomenon resembling dosage compensation. Double-stranded GUS RNAs or small GUS RNAs indicative of RNA-based silencing mechanisms were not detected in plants displaying reduced GUS activity. These results suggested that a transgene locus capable of pairing, as revealed by trans-activation, could also become silenced in an RNA-independent manner, thus linking DNA pairing and gene silencing. The transgene locus was complex and comprised an inverted repeat, which possibly potentiated allelic interactions. The locus was unable to trans-activate transgenes at ectopic sites, further implicating allelic pairing in the transvection effects.

Full Text

The Full Text of this article is available as a PDF (354.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Ren L., Chua N. H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 1989 Aug;8(8):2195–2202. doi: 10.1002/j.1460-2075.1989.tb08342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birchler J. A., Bhadra M. P., Bhadra U. Making noise about silence: repression of repeated genes in animals. Curr Opin Genet Dev. 2000 Apr;10(2):211–216. doi: 10.1016/s0959-437x(00)00065-4. [DOI] [PubMed] [Google Scholar]
  3. Cogoni C., Macino G. Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev. 2000 Dec;10(6):638–643. doi: 10.1016/s0959-437x(00)00134-9. [DOI] [PubMed] [Google Scholar]
  4. Colot V., Maloisel L., Rossignol J. L. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell. 1996 Sep 20;86(6):855–864. doi: 10.1016/s0092-8674(00)80161-0. [DOI] [PubMed] [Google Scholar]
  5. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10558–10562. doi: 10.1073/pnas.88.23.10558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duvillié B., Bucchini D., Tang T., Jami J., Pàldi A. Imprinting at the mouse Ins2 locus: evidence for cis- and trans-allelic interactions. Genomics. 1998 Jan 1;47(1):52–57. doi: 10.1006/geno.1997.5070. [DOI] [PubMed] [Google Scholar]
  7. Fagard M., Vaucheret H. (TRANS)GENE SILENCING IN PLANTS: How Many Mechanisms? Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51(NaN):167–194. doi: 10.1146/annurev.arplant.51.1.167. [DOI] [PubMed] [Google Scholar]
  8. Faugeron G. Diversity of homology-dependent gene silencing strategies in fungi. Curr Opin Microbiol. 2000 Apr;3(2):144–148. doi: 10.1016/s1369-5274(00)00066-7. [DOI] [PubMed] [Google Scholar]
  9. Garrick D., Fiering S., Martin D. I., Whitelaw E. Repeat-induced gene silencing in mammals. Nat Genet. 1998 Jan;18(1):56–59. doi: 10.1038/ng0198-56. [DOI] [PubMed] [Google Scholar]
  10. Goldsborough A. S., Kornberg T. B. Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature. 1996 Jun 27;381(6585):807–810. doi: 10.1038/381807a0. [DOI] [PubMed] [Google Scholar]
  11. Hamilton A. J., Baulcombe D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999 Oct 29;286(5441):950–952. doi: 10.1126/science.286.5441.950. [DOI] [PubMed] [Google Scholar]
  12. Henikoff S., Comai L. Trans-sensing effects: the ups and downs of being together. Cell. 1998 May 1;93(3):329–332. doi: 10.1016/s0092-8674(00)81161-7. [DOI] [PubMed] [Google Scholar]
  13. Henikoff S., Dreesen T. D. Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6704–6708. doi: 10.1073/pnas.86.17.6704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henikoff S. Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr Opin Cell Biol. 1997 Jun;9(3):388–395. doi: 10.1016/s0955-0674(97)80012-9. [DOI] [PubMed] [Google Scholar]
  15. Hollick J. B., Dorweiler J. E., Chandler V. L. Paramutation and related allelic interactions. Trends Genet. 1997 Aug;13(8):302–308. doi: 10.1016/s0168-9525(97)01184-0. [DOI] [PubMed] [Google Scholar]
  16. Holländer G. A., Zuklys S., Morel C., Mizoguchi E., Mobisson K., Simpson S., Terhorst C., Wishart W., Golan D. E., Bhan A. K. Monoallelic expression of the interleukin-2 locus. Science. 1998 Mar 27;279(5359):2118–2121. doi: 10.1126/science.279.5359.2118. [DOI] [PubMed] [Google Scholar]
  17. Kilby N. J., Davies G. J., Snaith M. R. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J. 1995 Nov;8(5):637–652. doi: 10.1046/j.1365-313x.1995.08050637.x. [DOI] [PubMed] [Google Scholar]
  18. LaSalle J. M., Lalande M. Homologous association of oppositely imprinted chromosomal domains. Science. 1996 May 3;272(5262):725–728. doi: 10.1126/science.272.5262.725. [DOI] [PubMed] [Google Scholar]
  19. Luff B., Pawlowski L., Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell. 1999 Apr;3(4):505–511. doi: 10.1016/s1097-2765(00)80478-5. [DOI] [PubMed] [Google Scholar]
  20. Marahrens Y. X-inactivation by chromosomal pairing events. Genes Dev. 1999 Oct 15;13(20):2624–2632. doi: 10.1101/gad.13.20.2624. [DOI] [PubMed] [Google Scholar]
  21. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matzke M. A., Primig M., Trnovsky J., Matzke A. J. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989 Mar;8(3):643–649. doi: 10.1002/j.1460-2075.1989.tb03421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meins F., Jr RNA degradation and models for post-transcriptional gene-silencing. Plant Mol Biol. 2000 Jun;43(2-3):261–273. doi: 10.1023/a:1006443731515. [DOI] [PubMed] [Google Scholar]
  24. Mette M. F., Aufsatz W., van der Winden J., Matzke M. A., Matzke A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000 Oct 2;19(19):5194–5201. doi: 10.1093/emboj/19.19.5194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mette M. F., van der Winden J., Matzke M. A., Matzke A. J. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 1999 Jan 4;18(1):241–248. doi: 10.1093/emboj/18.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morris J. R., Geyer P. K., Wu C. T. Core promoter elements can regulate transcription on a separate chromosome in trans. Genes Dev. 1999 Feb 1;13(3):253–258. doi: 10.1101/gad.13.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muskens M. W., Vissers A. P., Mol J. N., Kooter J. M. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol. 2000 Jun;43(2-3):243–260. doi: 10.1023/a:1006491613768. [DOI] [PubMed] [Google Scholar]
  28. Papp I., Iglesias V. A., Moscone E. A., Michalowski S., Spiker S., Park Y. D., Matzke M. A., Matzke A. J. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J. 1996 Sep;10(3):469–478. doi: 10.1046/j.1365-313x.1996.10030469.x. [DOI] [PubMed] [Google Scholar]
  29. Pietrzak M., Shillito R. D., Hohn T., Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 1986 Jul 25;14(14):5857–5868. doi: 10.1093/nar/14.14.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Plasterk R. H., Ketting R. F. The silence of the genes. Curr Opin Genet Dev. 2000 Oct;10(5):562–567. doi: 10.1016/s0959-437x(00)00128-3. [DOI] [PubMed] [Google Scholar]
  31. Schernthaner J. P., Matzke M. A., Matzke A. J. Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants. EMBO J. 1988 May;7(5):1249–1255. doi: 10.1002/j.1460-2075.1988.tb02938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Selker E. U. Gene silencing: repeats that count. Cell. 1999 Apr 16;97(2):157–160. doi: 10.1016/s0092-8674(00)80725-4. [DOI] [PubMed] [Google Scholar]
  33. Stam M., Viterbo A., Mol J. N., Kooter J. M. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol. 1998 Nov;18(11):6165–6177. doi: 10.1128/mcb.18.11.6165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stam M., Viterbo A., Mol J. N., Kooter J. M. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol. 1998 Nov;18(11):6165–6177. doi: 10.1128/mcb.18.11.6165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tartof K. D., Henikoff S. Trans-sensing effects from Drosophila to humans. Cell. 1991 Apr 19;65(2):201–203. doi: 10.1016/0092-8674(91)90153-p. [DOI] [PubMed] [Google Scholar]
  36. Van Houdt H., Van Montagu M., Depicker A. Both sense and antisense RNAs are targets for the sense transgene-induced posttranscriptional silencing mechanism. Mol Gen Genet. 2000 Jul;263(6):995–1002. doi: 10.1007/pl00008700. [DOI] [PubMed] [Google Scholar]
  37. Wassenegger M. RNA-directed DNA methylation. Plant Mol Biol. 2000 Jun;43(2-3):203–220. doi: 10.1023/a:1006479327881. [DOI] [PubMed] [Google Scholar]
  38. Wianny F., Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000 Feb;2(2):70–75. doi: 10.1038/35000016. [DOI] [PubMed] [Google Scholar]
  39. Wolffe A. P., Matzke M. A. Epigenetics: regulation through repression. Science. 1999 Oct 15;286(5439):481–486. doi: 10.1126/science.286.5439.481. [DOI] [PubMed] [Google Scholar]
  40. Wu C. T., Morris J. R. Transvection and other homology effects. Curr Opin Genet Dev. 1999 Apr;9(2):237–246. doi: 10.1016/S0959-437X(99)80035-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES