Skip to main content
Genetics logoLink to Genetics
. 2001 May;158(1):325–331. doi: 10.1093/genetics/158.1.325

Multiple and independent cessation of recombination between avian sex chromosomes.

H Ellegren 1, A Carmichael 1
PMCID: PMC1461649  PMID: 11333240

Abstract

Birds are characterized by female heterogamety; females carry the Z and W sex chromosomes, while males have two copies of the Z chromosome. We suggest here that full differentiation of the Z and W sex chromosomes of birds did not take place until after the split of major contemporary lineages, in the late Cretaceous. The ATP synthase alpha-subunit gene is now present in one copy each on the nonrecombining part of the W chromosome (ATP5A1W) and on the Z chromosome (ATP5A1Z). This gene seems to have evolved on several independent occasions, in different lineages, from a state of free recombination into two sex-specific and nonrecombining variants. ATP5A1W and ATP5A1Z are thus more similar within orders, relative to what W (or Z) are between orders. Moreover, this cessation of recombination apparently took place at different times in different lineages (estimated at 13, 40, and 65 million years ago in Ciconiiformes, Galliformes, and Anseriformes, respectively). We argue that these observations are the result of recent and traceable steps in the process where sex chromosomes gradually cease to recombine and become differentiated. Our data demonstrate that this process, once initiated, may occur independently in parallel in sister lineages.

Full Text

The Full Text of this article is available as a PDF (200.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgoyne P. S. The mammalian Y chromosome: a new perspective. Bioessays. 1998 May;20(5):363–366. doi: 10.1002/(SICI)1521-1878(199805)20:5<363::AID-BIES2>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  2. Carmichael A. N., Fridolfsson A. K., Halverson J., Ellegren H. Male-biased mutation rates revealed from Z and W chromosome-linked ATP synthase alpha-subunit (ATP5A1) sequences in birds. J Mol Evol. 2000 May;50(5):443–447. doi: 10.1007/s002390010046. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618–5622. doi: 10.1073/pnas.75.11.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. The evolution of sex chromosomes. Science. 1991 Mar 1;251(4997):1030–1033. doi: 10.1126/science.1998119. [DOI] [PubMed] [Google Scholar]
  6. Delichère C., Veuskens J., Hernould M., Barbacar N., Mouras A., Negrutiu I., Monéger F. SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. EMBO J. 1999 Aug 2;18(15):4169–4179. doi: 10.1093/emboj/18.15.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellegren H. First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc Biol Sci. 1996 Dec 22;263(1377):1635–1641. doi: 10.1098/rspb.1996.0239. [DOI] [PubMed] [Google Scholar]
  8. Ellegren H., Fridolfsson A. K. Male-driven evolution of DNA sequences in birds. Nat Genet. 1997 Oct;17(2):182–184. doi: 10.1038/ng1097-182. [DOI] [PubMed] [Google Scholar]
  9. Ellegren H. Evolution of the avian sex chromosomes and their role in sex determination. Trends Ecol Evol. 2000 May;15(5):188–192. doi: 10.1016/s0169-5347(00)01821-8. [DOI] [PubMed] [Google Scholar]
  10. Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. doi: 10.1093/genetics/78.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fridolfsson A. K., Ellegren H. Molecular evolution of the avian CHD1 genes on the Z and W sex chromosomes. Genetics. 2000 Aug;155(4):1903–1912. doi: 10.1093/genetics/155.4.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. García-Moreno J., Mindell D. P. Rooting a phylogeny with homologous genes on opposite sex chromosomes (gametologs): a case study using avian CHD. Mol Biol Evol. 2000 Dec;17(12):1826–1832. doi: 10.1093/oxfordjournals.molbev.a026283. [DOI] [PubMed] [Google Scholar]
  13. Graves J. A. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays. 1995 Apr;17(4):311–320. doi: 10.1002/bies.950170407. [DOI] [PubMed] [Google Scholar]
  14. Griffiths R., Daan S., Dijkstra C. Sex identification in birds using two CHD genes. Proc Biol Sci. 1996 Sep 22;263(1374):1251–1256. doi: 10.1098/rspb.1996.0184. [DOI] [PubMed] [Google Scholar]
  15. Griffiths R., Korn R. M. A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus. Gene. 1997 Sep 15;197(1-2):225–229. doi: 10.1016/s0378-1119(97)00266-7. [DOI] [PubMed] [Google Scholar]
  16. Guttman D. S., Charlesworth D. An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature. 1998 May 21;393(6682):263–266. doi: 10.1038/30492. [DOI] [PubMed] [Google Scholar]
  17. Hayashida H., Kuma K., Miyata T. Interchromosomal gene conversion as a possible mechanism for explaining divergence patterns of ZFY-related genes. J Mol Evol. 1992 Aug;35(2):181–183. doi: 10.1007/BF00183228. [DOI] [PubMed] [Google Scholar]
  18. Härlid A., Janke A., Arnason U. The complete mitochondrial genome of Rhea americana and early avian divergences. J Mol Evol. 1998 Jun;46(6):669–679. doi: 10.1007/pl00006347. [DOI] [PubMed] [Google Scholar]
  19. Härlid A., Janke A., Arnason U. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Mol Biol Evol. 1997 Jul;14(7):754–761. doi: 10.1093/oxfordjournals.molbev.a025815. [DOI] [PubMed] [Google Scholar]
  20. Lahn B. T., Page D. C. Four evolutionary strata on the human X chromosome. Science. 1999 Oct 29;286(5441):964–967. doi: 10.1126/science.286.5441.964. [DOI] [PubMed] [Google Scholar]
  21. Lahn B. T., Page D. C. Functional coherence of the human Y chromosome. Science. 1997 Oct 24;278(5338):675–680. doi: 10.1126/science.278.5338.675. [DOI] [PubMed] [Google Scholar]
  22. Lahn B. T., Page D. C. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet. 1999 Apr;21(4):429–433. doi: 10.1038/7771. [DOI] [PubMed] [Google Scholar]
  23. Liskay R. M., Letsou A., Stachelek J. L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987 Jan;115(1):161–167. doi: 10.1093/genetics/115.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martinsohn J. T., Sousa A. B., Guethlein L. A., Howard J. C. The gene conversion hypothesis of MHC evolution: a review. Immunogenetics. 1999 Nov;50(3-4):168–200. doi: 10.1007/s002510050593. [DOI] [PubMed] [Google Scholar]
  25. Orr H. A., Kim Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics. 1998 Dec;150(4):1693–1698. doi: 10.1093/genetics/150.4.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pamilo P., Bianchi N. O. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol. 1993 Mar;10(2):271–281. doi: 10.1093/oxfordjournals.molbev.a040003. [DOI] [PubMed] [Google Scholar]
  27. Pecon Slattery J., Sanner-Wachter L., O'Brien S. J. Novel gene conversion between X-Y homologues located in the nonrecombining region of the Y chromosome in Felidae (Mammalia). Proc Natl Acad Sci U S A. 2000 May 9;97(10):5307–5312. doi: 10.1073/pnas.97.10.5307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pigozzi M. I., Solari A. J. Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res. 1997 Sep;5(6):421–428. doi: 10.1023/a:1018404610973. [DOI] [PubMed] [Google Scholar]
  29. Rice W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics. 1987 May;116(1):161–167. doi: 10.1093/genetics/116.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roldan ER, Gomendio M. The Y chromosome as a battle ground for sexual selection. Trends Ecol Evol. 1999 Feb;14(2):58–62. doi: 10.1016/s0169-5347(98)01567-5. [DOI] [PubMed] [Google Scholar]
  31. Saxena R., Brown L. G., Hawkins T., Alagappan R. K., Skaletsky H., Reeve M. P., Reijo R., Rozen S., Dinulos M. B., Disteche C. M. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet. 1996 Nov;14(3):292–299. doi: 10.1038/ng1196-292. [DOI] [PubMed] [Google Scholar]
  32. Shetty S., Griffin D. K., Graves J. A. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7(4):289–295. doi: 10.1023/a:1009278914829. [DOI] [PubMed] [Google Scholar]
  33. Solari A. J., Fechheimer N. S., Bitgood J. J. Pairing of ZW gonosomes and the localized recombination nodule in two Z-autosome translocations in Gallus domesticus. Cytogenet Cell Genet. 1988;48(3):130–136. doi: 10.1159/000132609. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES