Skip to main content
Genetics logoLink to Genetics
. 2001 Jul;158(3):1279–1288. doi: 10.1093/genetics/158.3.1279

Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis.

S I Wright 1, Q H Le 1, D J Schoen 1, T E Bureau 1
PMCID: PMC1461736  PMID: 11454774

Abstract

Theoretical models predict that the mating system should be an important factor driving the dynamics of transposable elements in natural populations due to differences in selective pressure on both element and host. We used a PCR-based approach to examine the abundance and levels of insertion polymorphism of Ac-III, a recently identified Ac-like transposon family, in natural populations of the selfing plant Arabidopsis thaliana and its close outcrossing relative, Arabidopsis lyrata. Although several insertions appeared to be ancient and shared between species, there is strong evidence for recent activity of this element family in both species. Sequences of the regions flanking insertions indicate that all Ac-III transposons segregating in natural populations are in noncoding regions and provide no evidence for local transposition events. Transposon display analysis suggests the presence of slightly higher numbers of insertion sites per individual but fewer total polymorphic insertions in the self-pollinating A. thaliana than A. lyrata. Element insertions appear to be segregating at significantly lower frequencies in A. lyrata than A. thaliana, which is consistent with a reduction in transposition rate, reduction in effective population size, or reduced efficacy of natural selection against element insertions in selfing populations.

Full Text

The Full Text of this article is available as a PDF (182.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bancroft I., Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 1993 Aug;134(4):1221–1229. doi: 10.1093/genetics/134.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batzer M. A., Arcot S. S., Phinney J. W., Alegria-Hartman M., Kass D. H., Milligan S. M., Kimpton C., Gill P., Hochmeister M., Ioannou P. A. Genetic variation of recent Alu insertions in human populations. J Mol Evol. 1996 Jan;42(1):22–29. doi: 10.1007/BF00163207. [DOI] [PubMed] [Google Scholar]
  3. Biémont C., Tsitrone A., Vieira C., Hoogland C. Transposable element distribution in Drosophila. Genetics. 1997 Dec;147(4):1997–1999. doi: 10.1093/genetics/147.4.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brookfield J. F., Badge R. M. Population genetics models of transposable elements. Genetica. 1997;100(1-3):281–294. [PubMed] [Google Scholar]
  6. Charlesworth B., Langley C. H., Sniegowski P. D. Transposable element distributions in Drosophila. Genetics. 1997 Dec;147(4):1993–1995. doi: 10.1093/genetics/147.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B., Langley C. H. The evolution of self-regulated transposition of transposable elements. Genetics. 1986 Feb;112(2):359–383. doi: 10.1093/genetics/112.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Charlesworth B., Langley C. H. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989;23:251–287. doi: 10.1146/annurev.ge.23.120189.001343. [DOI] [PubMed] [Google Scholar]
  9. Charlesworth B., Lapid A. A study of ten families of transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet Res. 1989 Oct;54(2):113–125. doi: 10.1017/s0016672300028482. [DOI] [PubMed] [Google Scholar]
  10. Charlesworth B., Lapid A., Canada D. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genet Res. 1992 Oct;60(2):103–114. doi: 10.1017/s0016672300030792. [DOI] [PubMed] [Google Scholar]
  11. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Charlesworth D., Charlesworth B. Transposable elements in inbreeding and outbreeding populations. Genetics. 1995 May;140(1):415–417. doi: 10.1093/genetics/140.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coen E. S., Carpenter R., Martin C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell. 1986 Oct 24;47(2):285–296. doi: 10.1016/0092-8674(86)90451-4. [DOI] [PubMed] [Google Scholar]
  14. Dooner H. K., Belachew A. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics. 1991 Nov;129(3):855–862. doi: 10.1093/genetics/129.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frank M. J., Liu D., Tsay Y. F., Ustach C., Crawford N. M. Tag1 is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco. Plant Cell. 1997 Oct;9(10):1745–1756. doi: 10.1105/tpc.9.10.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frank M. J., Preuss D., Mack A., Kuhlmann T. C., Crawford N. M. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes. Mol Gen Genet. 1998 Feb;257(4):478–484. doi: 10.1007/pl00008622. [DOI] [PubMed] [Google Scholar]
  17. Golding G. B., Aquadro C. F., Langley C. H. Sequence evolution within populations under multiple types of mutation. Proc Natl Acad Sci U S A. 1986 Jan;83(2):427–431. doi: 10.1073/pnas.83.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henk A. D., Warren R. F., Innes R. W. A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics. 1999 Apr;151(4):1581–1589. doi: 10.1093/genetics/151.4.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hey J. The transposable portion of the genome of Drosophila algonquin is very different from that in D. melanogaster. Mol Biol Evol. 1989 Jan;6(1):66–79. doi: 10.1093/oxfordjournals.molbev.a040530. [DOI] [PubMed] [Google Scholar]
  20. Kidwell MG, Lisch DR. Transposable elements and host genome evolution. Trends Ecol Evol. 2000 Mar;15(3):95–99. doi: 10.1016/s0169-5347(99)01817-0. [DOI] [PubMed] [Google Scholar]
  21. Le Q. H., Wright S., Yu Z., Bureau T. Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7376–7381. doi: 10.1073/pnas.97.13.7376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montgomery E. A., Huang S. M., Langley C. H., Judd B. H. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics. 1991 Dec;129(4):1085–1098. doi: 10.1093/genetics/129.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Montgomery E. A., Langley C. H. Transposable Elements in Mendelian Populations. II. Distribution of Three COPIA-like Elements in a Natural Population of DROSOPHILA MELANOGASTER. Genetics. 1983 Jul;104(3):473–483. doi: 10.1093/genetics/104.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murata S., Takasaki N., Saitoh M., Tachida H., Okada N. Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo). Genetics. 1996 Mar;142(3):915–926. doi: 10.1093/genetics/142.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
  26. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  27. Sawyer S. A., Dykhuizen D. E., Hartl D. L. Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6225–6228. doi: 10.1073/pnas.84.17.6225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shalev G., Levy A. A. The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics. 1997 Jul;146(3):1143–1151. doi: 10.1093/genetics/146.3.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Surzycki S. A., Belknap W. R. Characterization of repetitive DNA elements in Arabidopsis. J Mol Evol. 1999 Jun;48(6):684–691. doi: 10.1007/pl00006512. [DOI] [PubMed] [Google Scholar]
  30. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takasaki N., Yamaki T., Hamada M., Park L., Okada N. The salmon SmaI family of short interspersed repetitive elements (SINEs): interspecific and intraspecific variation of the insertion of SINEs in the genomes of chum and pink salmon. Genetics. 1997 May;146(1):369–380. doi: 10.1093/genetics/146.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tsay Y. F., Frank M. J., Page T., Dean C., Crawford N. M. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science. 1993 Apr 16;260(5106):342–344. doi: 10.1126/science.8385803. [DOI] [PubMed] [Google Scholar]
  33. Van den Broeck D., Maes T., Sauer M., Zethof J., De Keukeleire P., D'hauw M., Van Montagu M., Gerats T. Transposon Display identifies individual transposable elements in high copy number lines. Plant J. 1998 Jan;13(1):121–129. doi: 10.1046/j.1365-313X.1998.00004.x. [DOI] [PubMed] [Google Scholar]
  34. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Waugh R., McLean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. B., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997 Feb 27;253(6):687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
  36. Wright S. I., Schoen D. J. Transposon dynamics and the breeding system. Genetica. 1999;107(1-3):139–148. [PubMed] [Google Scholar]
  37. Zhang J., Peterson T. Genome rearrangements by nonlinear transposons in maize. Genetics. 1999 Nov;153(3):1403–1410. doi: 10.1093/genetics/153.3.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES