Skip to main content
Genetics logoLink to Genetics
. 2001 Aug;158(4):1725–1735. doi: 10.1093/genetics/158.4.1725

Species and recombination effects on DNA variability in the tomato genus.

E Baudry 1, C Kerdelhué 1, H Innan 1, W Stephan 1
PMCID: PMC1461759  PMID: 11514458

Abstract

Population genetics theory predicts that strong selection for rare, beneficial mutations or against frequent, deleterious mutations reduces polymorphism at linked neutral (or weakly selected) sites. The reduction of genetic variation is expected to be more severe when recombination rates are lower. In outbreeding species, low recombination rates are usually confined to certain chromosomal regions, such as centromeres and telomeres. In contrast, in predominantly selfing species, the rarity of double heterozygotes leads to a reduced effective recombination rate in the whole genome. We investigated the effects of restricted recombination on DNA polymorphism in these two cases, analyzing five Lycopersicon species with contrasting mating systems: L. chilense, L. hirsutum, L. peruvianum, L. chmielewskii, and L. pimpinellifolium, of which only the first three species have self-incompatibility alleles. In each species, we determined DNA sequence variation of five single-copy genes located in chromosomal regions with either high or low recombination rate. We found that the mating system has a highly significant effect on the level of polymorphism, whereas recombination has only a weak influence. The effect of recombination on levels of polymorphism in Lycopersicon is much weaker than in other well-studied species, including Drosophila. To explain these observations, we discuss a number of hypotheses, invoking selection, recombination, and demographic factors associated with the mating system. We also provide evidence that L. peruvianum, showing a level of polymorphism (almost 3%) that is comparable to the level of divergence in the whole genus, is the ancestral species from which the other species of the genus Lycopersicon have originated relatively recently.

Full Text

The Full Text of this article is available as a PDF (122.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Awadalla P., Ritland K. Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol. 1997 Oct;14(10):1023–1034. doi: 10.1093/oxfordjournals.molbev.a025708. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. doi: 10.1017/s0016672300034029. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Nordborg M., Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997 Oct;70(2):155–174. doi: 10.1017/s0016672397002954. [DOI] [PubMed] [Google Scholar]
  5. Clark A. G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol. 1990 Mar;7(2):111–122. doi: 10.1093/oxfordjournals.molbev.a040591. [DOI] [PubMed] [Google Scholar]
  6. Elliott K. J., Butler W. O., Dickinson C. D., Konno Y., Vedvick T. S., Fitzmaurice L., Mirkov T. E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993 Feb;21(3):515–524. doi: 10.1007/BF00028808. [DOI] [PubMed] [Google Scholar]
  7. Fridman E., Pleban T., Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4718–4723. doi: 10.1073/pnas.97.9.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ganal M. W., Czihal R., Hannappel U., Kloos D. U., Polley A., Ling H. Q. Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res. 1998 Aug;8(8):842–847. doi: 10.1101/gr.8.8.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gaut B. S., Le Thierry d'Ennequin M., Peek A. S., Sawkins M. C. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7008–7015. doi: 10.1073/pnas.97.13.7008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hey J., Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R., Kaplan N. L. Deleterious background selection with recombination. Genetics. 1995 Dec;141(4):1605–1617. doi: 10.1093/genetics/141.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
  17. Kraft T., Säll T., Magnusson-Rading I., Nilsson N. O., Halldén C. Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). Genetics. 1998 Nov;150(3):1239–1244. doi: 10.1093/genetics/150.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu F., Charlesworth D., Kreitman M. The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia. Genetics. 1999 Jan;151(1):343–357. doi: 10.1093/genetics/151.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu F., Zhang L., Charlesworth D. Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc Biol Sci. 1998 Feb 22;265(1393):293–301. doi: 10.1098/rspb.1998.0295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  22. Miyashita N. T., Innan H., Terauchi R. Intra- and interspecific variation of the alcohol dehydrogenase locus region in wild plants Arabis gemmifera and Arabidopsis thaliana. Mol Biol Evol. 1996 Feb;13(2):433–436. doi: 10.1093/oxfordjournals.molbev.a025603. [DOI] [PubMed] [Google Scholar]
  23. Nachman M. W., Bauer V. L., Crowell S. L., Aquadro C. F. DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998 Nov;150(3):1133–1141. doi: 10.1093/genetics/150.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nachman M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics. 1997 Nov;147(3):1303–1316. doi: 10.1093/genetics/147.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J Mol Evol. 1993 Sep;37(3):240–244. doi: 10.1007/BF00175500. [DOI] [PubMed] [Google Scholar]
  26. Nordborg M. Structured coalescent processes on different time scales. Genetics. 1997 Aug;146(4):1501–1514. doi: 10.1093/genetics/146.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pogson G. H., Zouros E. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placopecten magellanicus: a test of the associative overdominance hypothesis. Genetics. 1994 May;137(1):221–231. doi: 10.1093/genetics/137.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  29. Savolainen O., Langley C. H., Lazzaro B. P., Fr H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol. 2000 Apr;17(4):645–655. doi: 10.1093/oxfordjournals.molbev.a026343. [DOI] [PubMed] [Google Scholar]
  30. Sherman J. D., Stack S. M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics. 1995 Oct;141(2):683–708. doi: 10.1093/genetics/141.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  32. Stephan W., Langley C. H. DNA polymorphism in lycopersicon and crossing-over per physical length. Genetics. 1998 Dec;150(4):1585–1593. doi: 10.1093/genetics/150.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stephan W., Xing L., Kirby D. A., Braverman J. M. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5649–5654. doi: 10.1073/pnas.95.10.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wakeley J., Hey J. Estimating ancestral population parameters. Genetics. 1997 Mar;145(3):847–855. doi: 10.1093/genetics/145.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang R. L., Wakeley J., Hey J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics. 1997 Nov;147(3):1091–1106. doi: 10.1093/genetics/147.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whitlock M. C., Barton N. H. The effective size of a subdivided population. Genetics. 1997 May;146(1):427–441. doi: 10.1093/genetics/146.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wiehe T. H., Stephan W. Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol Biol Evol. 1993 Jul;10(4):842–854. doi: 10.1093/oxfordjournals.molbev.a040046. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES