Abstract
Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes.
Full Text
The Full Text of this article is available as a PDF (169.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asmussen M. A., Arnold J., Avise J. C. Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes. Genetics. 1987 Apr;115(4):755–768. doi: 10.1093/genetics/115.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asmussen M. A., Arnold J. The effects of admixture and population subdivision on cytonuclear disequilibria. Theor Popul Biol. 1991 Jun;39(3):273–300. doi: 10.1016/0040-5809(91)90024-a. [DOI] [PubMed] [Google Scholar]
- Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear dynamics. Life stages with sex differences. Genetics. 1998 Aug;149(4):2063–2077. doi: 10.1093/genetics/149.4.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear polymorphism and disequilibria. Genetics. 1996 Oct;144(2):839–853. doi: 10.1093/genetics/144.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boussy I. A., Itoh M., Rand D., Woodruff R. C. Origin and decay of the P element-associated latitudinal cline in Australian Drosophila melanogaster. Genetica. 1998;104(1):45–57. doi: 10.1023/a:1003469131647. [DOI] [PubMed] [Google Scholar]
- Clark A. G., Lyckegaard E. M. Natural selection with nuclear and cytoplasmic transmission. III. Joint analysis of segregation and mtDNA in Drosophila melanogaster. Genetics. 1988 Mar;118(3):471–481. doi: 10.1093/genetics/118.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. G. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics. 1984 Aug;107(4):679–701. doi: 10.1093/genetics/107.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. G. Natural selection with nuclear and cytoplasmic transmission. II. Tests with Drosophila from diverse populations. Genetics. 1985 Sep;111(1):97–112. doi: 10.1093/genetics/111.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datta S., Arnold J. Dynamics of cytonuclear disequilibria in subdivided populations. J Theor Biol. 1998 May 7;192(1):99–111. doi: 10.1006/jtbi.1997.0623. [DOI] [PubMed] [Google Scholar]
- Datta S., Kiparsky M., Rand D. M., Arnold J. A statistical test of a neutral model using the dynamics of cytonuclear disequilibria. Genetics. 1996 Dec;144(4):1985–1992. doi: 10.1093/genetics/144.4.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fos M., Domínguez M. A., Latorre A., Moya A. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4198–4201. doi: 10.1073/pnas.87.11.4198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank S. A., Hurst L. D. Mitochondria and male disease. Nature. 1996 Sep 19;383(6597):224–224. doi: 10.1038/383224a0. [DOI] [PubMed] [Google Scholar]
- Goodisman M. A., Asmussen M. A. Cytonuclear theory for haplodiploid species and X-linked genes. I. Hardy-Weinberg dynamics and continent-island, hybrid zone models. Genetics. 1997 Sep;147(1):321–338. doi: 10.1093/genetics/147.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
- Gregorius H. R., Ross M. D. Selection with gene-cytoplasm interactions. I. Maintenance of cytoplasm polymorphisms. Genetics. 1984 May;107(1):165–178. doi: 10.1093/genetics/107.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hale L. R., Singh R. S. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics. 1991 Sep;129(1):103–117. doi: 10.1093/genetics/129.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998 Jan;148(1):221–231. doi: 10.1093/genetics/148.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland B., Rice W. R. Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5083–5088. doi: 10.1073/pnas.96.9.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kambhampati S., Rai K. S., Verleye D. M. Frequencies of mitochondrial DNA haplotypes in laboratory cage populations of the mosquito, Aedes albopictus. Genetics. 1992 Sep;132(1):205–209. doi: 10.1093/genetics/132.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilpatrick S. T., Rand D. M. Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics. 1995 Nov;141(3):1113–1124. doi: 10.1093/genetics/141.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo R., Satta Y., Matsuura E. T., Ishiwa H., Takahata N., Chigusa S. I. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics. 1990 Nov;126(3):657–663. doi: 10.1093/genetics/126.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacRae A. F., Anderson W. W. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics. 1988 Oct;120(2):485–494. doi: 10.1093/genetics/120.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maroof M. A., Zhang Q., Neale D. B., Allard R. W. Associations between nuclear loci and chloroplast DNA genotypes in wild barley. Genetics. 1992 May;131(1):225–231. doi: 10.1093/genetics/131.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moya A., Barrio E., Martínez D., Latorre A., González-Candelas F., Ramón M., Castro J. A. Molecular characterization and cytonuclear disequilibria of two Drosophila subobscura mitochondrial haplotypes. Genome. 1993 Oct;36(5):890–898. doi: 10.1139/g93-117. [DOI] [PubMed] [Google Scholar]
- Nachman M. W. Deleterious mutations in animal mitochondrial DNA. Genetica. 1998;102-103(1-6):61–69. [PubMed] [Google Scholar]
- Nigro L., Prout T. Is there selection on RFLP differences in mitochondrial DNA? Genetics. 1990 Jul;125(3):551–555. doi: 10.1093/genetics/125.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge L., Hurst L. D. Sex and conflict. Science. 1998 Sep 25;281(5385):2003–2008. doi: 10.1126/science.281.5385.2003. [DOI] [PubMed] [Google Scholar]
- Poinsot D., Bourtzis K., Markakis G., Savakis C., Merçot H. Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics. 1998 Sep;150(1):227–237. doi: 10.1093/genetics/150.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand D. M., Dorfsman M., Kann L. M. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics. 1994 Nov;138(3):741–756. doi: 10.1093/genetics/138.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand D. M., Kann L. M. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–748. doi: 10.1093/oxfordjournals.molbev.a025634. [DOI] [PubMed] [Google Scholar]
- Rand D. M., Kann L. M. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica. 1998;102-103(1-6):393–407. [PubMed] [Google Scholar]
- Ruiz-Pesini E., Lapeña A. C., Díez-Sánchez C., Pérez-Martos A., Montoya J., Alvarez E., Díaz M., Urriés A., Montoro L., López-Pérez M. J. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000 Aug 9;67(3):682–696. doi: 10.1086/303040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinreich D. M., Rand D. M. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics. 2000 Sep;156(1):385–399. doi: 10.1093/genetics/156.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwick M. E., Salstrom J. L., Langley C. H. Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics. 1999 Aug;152(4):1605–1614. doi: 10.1093/genetics/152.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]