Abstract
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.
Full Text
The Full Text of this article is available as a PDF (465.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bendich A. J., Anderson R. S. Novel properties of satellite DNA from muskmelon. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1511–1515. doi: 10.1073/pnas.71.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennetzen J. L. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 1996 Sep;4(9):347–353. doi: 10.1016/0966-842x(96)10042-1. [DOI] [PubMed] [Google Scholar]
- Blanchard J. L., Lynch M. Organellar genes: why do they end up in the nucleus? Trends Genet. 2000 Jul;16(7):315–320. doi: 10.1016/s0168-9525(00)02053-9. [DOI] [PubMed] [Google Scholar]
- Dawson A. J., Jones V. P., Leaver C. J. The apocytochrome b gene in maize mitochondria does not contain introns and is preceded by a potential ribosome binding site. EMBO J. 1984 Sep;3(9):2107–2113. doi: 10.1002/j.1460-2075.1984.tb02098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fauron C., Casper M., Gao Y., Moore B. The maize mitochondrial genome: dynamic, yet functional. Trends Genet. 1995 Jun;11(6):228–235. doi: 10.1016/s0168-9525(00)89056-3. [DOI] [PubMed] [Google Scholar]
- Hancock J. M. Simple sequences and the expanding genome. Bioessays. 1996 May;18(5):421–425. doi: 10.1002/bies.950180512. [DOI] [PubMed] [Google Scholar]
- Heslop-Harrison J. S. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000 May;12(5):617–636. doi: 10.1105/tpc.12.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill K. A., Singh S. M. The evolution of species-type specificity in the global DNA sequence organization of mitochondrial genomes. Genome. 1997 Jun;40(3):342–356. doi: 10.1139/g97-047. [DOI] [PubMed] [Google Scholar]
- Klein M., Eckert-Ossenkopp U., Schmiedeberg I., Brandt P., Unseld M., Brennicke A., Schuster W. Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J. 1994 Sep;6(3):447–455. doi: 10.1046/j.1365-313x.1994.06030447.x. [DOI] [PubMed] [Google Scholar]
- Kubo T., Nishizawa S., Sugawara A., Itchoda N., Estiati A., Mikami T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 2000 Jul 1;28(13):2571–2576. doi: 10.1093/nar/28.13.2571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nizetic D., Drmanac R., Lehrach H. An improved bacterial colony lysis procedure enables direct DNA hybridisation using short (10, 11 bases) oligonucleotides to cosmids. Nucleic Acids Res. 1991 Jan 11;19(1):182–182. doi: 10.1093/nar/19.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nizetić D., Zehetner G., Monaco A. P., Gellen L., Young B. D., Lehrach H. Construction, arraying, and high-density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3233–3237. doi: 10.1073/pnas.88.8.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D., Herbon L. A. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol. 1988 Dec;28(1-2):87–97. doi: 10.1007/BF02143500. [DOI] [PubMed] [Google Scholar]
- Palmer J. D. Physical and gene mapping of chloroplast DNA from Atriplex triangularis and Cucumis sativa. Nucleic Acids Res. 1982 Mar 11;10(5):1593–1605. doi: 10.1093/nar/10.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salazar R. A., Pring D. R., Kempken F. Editing of mitochondrial atp9 transcripts from two sorghum lines. Curr Genet. 1991 Dec;20(6):483–486. doi: 10.1007/BF00334776. [DOI] [PubMed] [Google Scholar]
- Schuster W., Brennicke A. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA? EMBO J. 1987 Oct;6(10):2857–2863. doi: 10.1002/j.1460-2075.1987.tb02587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. B. DNA transposition between plant organellar genomes. J Cell Sci Suppl. 1987;7:145–154. doi: 10.1242/jcs.1987.supplement_7.11. [DOI] [PubMed] [Google Scholar]
- Thorsness P. E., Weber E. R. Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol. 1996;165:207–234. doi: 10.1016/s0074-7696(08)62223-8. [DOI] [PubMed] [Google Scholar]
- Unseld M., Marienfeld J. R., Brandt P., Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997 Jan;15(1):57–61. doi: 10.1038/ng0197-57. [DOI] [PubMed] [Google Scholar]
- Ward B. L., Anderson R. S., Bendich A. J. The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell. 1981 Sep;25(3):793–803. doi: 10.1016/0092-8674(81)90187-2. [DOI] [PubMed] [Google Scholar]