Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):659–671. doi: 10.1093/genetics/159.2.659

Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster.

B P Lazzaro 1, A G Clark 1
PMCID: PMC1461832  PMID: 11606542

Abstract

Insects produce a limited variety of antibacterial peptides to combat a wide diversity of pathogens. These peptides are often conserved across evolutionarily distant taxa, but little is known about the level and structure of polymorphism within species. We have surveyed naturally occurring genetic variation in the promoter and coding regions of three Attacin antibacterial peptide genes from 12 lines of Drosophila melanogaster. These genes exhibit high levels of silent nucleotide variations (1-3% per nucleotide heterozygosity), but are not excessively polymorphic at the amino acid level. There is extensive variation in the Attacin promoters, some of which may affect transcriptional efficiency, and one line carries a deletion in the Attacin A coding region that renders this gene nonfunctional. Two of the genes, Attacins A and B, are arranged in tandem and show evidence of repeated interlocus gene conversion. Attacin C, more divergent and located 1.3 Mbp upstream of Attacins A and B, does not appear to have been involved in such exchanges. All three genes are characterized by divergent haplotypes, and one Attacin AB allele appears to have recently increased rapidly in frequency in the population.

Full Text

The Full Text of this article is available as a PDF (493.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K., Okada M., Natori S. Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae. Biochemistry. 1987 Jan 13;26(1):226–230. doi: 10.1021/bi00375a030. [DOI] [PubMed] [Google Scholar]
  2. Asling B., Dushay M. S., Hultmark D. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol. 1995 Apr;25(4):511–518. doi: 10.1016/0965-1748(94)00091-c. [DOI] [PubMed] [Google Scholar]
  3. Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329–344. doi: 10.1016/s0145-305x(99)00015-4. [DOI] [PubMed] [Google Scholar]
  4. Carlsson A., Engström P., Palva E. T., Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun. 1991 Sep;59(9):3040–3045. doi: 10.1128/iai.59.9.3040-3045.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlsson A., Nyström T., de Cock H., Bennich H. Attacin--an insect immune protein--binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology. 1998 Aug;144(Pt 8):2179–2188. doi: 10.1099/00221287-144-8-2179. [DOI] [PubMed] [Google Scholar]
  6. Carvalho A. B., Clark A. G. Intron size and natural selection. Nature. 1999 Sep 23;401(6751):344–344. doi: 10.1038/43827. [DOI] [PubMed] [Google Scholar]
  7. Clark A. G., Wang L. Molecular population genetics of Drosophila immune system genes. Genetics. 1997 Oct;147(2):713–724. doi: 10.1093/genetics/147.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Date A., Satta Y., Takahata N., Chigusa S. I. Evolutionary history and mechanism of the Drosophila cecropin gene family. Immunogenetics. 1998 May;47(6):417–429. doi: 10.1007/s002510050379. [DOI] [PubMed] [Google Scholar]
  9. Dushay M. S., Roethele J. B., Chaverri J. M., Dulek D. E., Syed S. K., Kitami T., Eldon E. D. Two attacin antibacterial genes of Drosophila melanogaster. Gene. 2000 Apr 4;246(1-2):49–57. doi: 10.1016/s0378-1119(00)00041-x. [DOI] [PubMed] [Google Scholar]
  10. Engström P., Carlsson A., Engström A., Tao Z. J., Bennich H. The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J. 1984 Dec 20;3(13):3347–3351. doi: 10.1002/j.1460-2075.1984.tb02302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gunne H., Hellers M., Steiner H. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur J Biochem. 1990 Feb 14;187(3):699–703. doi: 10.1111/j.1432-1033.1990.tb15356.x. [DOI] [PubMed] [Google Scholar]
  15. Hedengren M., Borge K., Hultmark D. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem Biophys Res Commun. 2000 Dec 20;279(2):574–581. doi: 10.1006/bbrc.2000.3988. [DOI] [PubMed] [Google Scholar]
  16. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  17. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hultmark D., Engström A., Andersson K., Steiner H., Bennich H., Boman H. G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983;2(4):571–576. doi: 10.1002/j.1460-2075.1983.tb01465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kang D., Liu G., Gunne H., Steiner H. PCR differential display of immune gene expression in Trichoplusia ni. Insect Biochem Mol Biol. 1996 Feb;26(2):177–184. doi: 10.1016/0965-1748(95)00080-1. [DOI] [PubMed] [Google Scholar]
  20. Kliman R. M., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074. [DOI] [PubMed] [Google Scholar]
  21. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kylsten P., Samakovlis C., Hultmark D. The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 1990 Jan;9(1):217–224. doi: 10.1002/j.1460-2075.1990.tb08098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leigh Brown A. J., Ish-Horowicz D. Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature. 1981 Apr 23;290(5808):677–682. doi: 10.1038/290677a0. [DOI] [PubMed] [Google Scholar]
  24. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  25. Mellor A. L., Weiss E. H., Ramachandran K., Flavell R. A. A potential donor gene for the bm1 gene conversion event in the C57BL mouse. Nature. 1983 Dec 22;306(5945):792–795. doi: 10.1038/306792a0. [DOI] [PubMed] [Google Scholar]
  26. Ourth D. D., Lockey T. D., Renis H. E. Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem Biophys Res Commun. 1994 Apr 15;200(1):35–44. doi: 10.1006/bbrc.1994.1410. [DOI] [PubMed] [Google Scholar]
  27. Ramos-Onsins S., Aguadé M. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 1998 Sep;150(1):157–171. doi: 10.1093/genetics/150.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sugiyama M., Kuniyoshi H., Kotani E., Taniai K., Kadono-Okuda K., Kato Y., Yamamoto M., Shimabukuro M., Chowdhury S., Xu J. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem Mol Biol. 1995 Mar;25(3):385–392. doi: 10.1016/0965-1748(94)00080-2. [DOI] [PubMed] [Google Scholar]
  30. Sun S. C., Lindström I., Lee J. Y., Faye I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur J Biochem. 1991 Feb 26;196(1):247–254. doi: 10.1111/j.1432-1033.1991.tb15811.x. [DOI] [PubMed] [Google Scholar]
  31. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES