Abstract
A striking correlation between neural expression and high net negative charge in some teleost isozymes led to the interesting, yet untested, suggestion that negative charge represents an adaptation (via natural selection) to the neural environment. We examine the evolution of the triosephosphate isomerase (TPI) gene family in fishes for periods of positive selection. Teleost fish express two TPI proteins, including a generally expressed, neutrally charged isozyme and a neurally expressed, negatively charged isozyme; more primitive fish express only a single, generally expressed TPI isozyme. The TPI gene phylogeny constructed from sequences isolated from two teleosts, a single acipenseriform, and other TPI sequences from the databases, supports a single gene duplication event early in the evolution of bony fishes. Comparisons between inferred ancestral TPI sequences indicate that the neural TPI isozyme evolved through a period of positive selection resulting in the biased accumulation of negatively charged amino acids. Further, the number of nucleotide changes required for the observed amino acid substitutions suggests that selection acted on the overall charge of the protein and not on specific key amino acids.
Full Text
The Full Text of this article is available as a PDF (203.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amores A., Force A., Yan Y. L., Joly L., Amemiya C., Fritz A., Ho R. K., Langeland J., Prince V., Wang Y. L. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998 Nov 27;282(5394):1711–1714. doi: 10.1126/science.282.5394.1711. [DOI] [PubMed] [Google Scholar]
- BURGER A., RICHTERICH R., AEBI H. DIE HETEROGENITAET DER KREATIN-KINASE. Biochem Z. 1964 Jan 28;339:305–314. [PubMed] [Google Scholar]
- Bishop J. G., Dean A. M., Mitchell-Olds T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5322–5327. doi: 10.1073/pnas.97.10.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champion M. J., Whitt G. S. Differential gene expression in multilocus isozyme systmes of the developing green sunfish. J Exp Zool. 1976 Jun;196(3):263–281. doi: 10.1002/jez.1401960302. [DOI] [PubMed] [Google Scholar]
- Cheng J., Mielnicki L. M., Pruitt S. C., Maquat L. E. Nucleotide sequence of murine triosephosphate isomerase cDNA. Nucleic Acids Res. 1990 Jul 25;18(14):4261–4261. doi: 10.1093/nar/18.14.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760–763. doi: 10.1107/S0907444994003112. [DOI] [PubMed] [Google Scholar]
- Duda T. F., Jr, Palumbi S. R. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6820–6823. doi: 10.1073/pnas.96.12.6820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher S. E., Whitt G. S. Evolution of isozyme loci and their differential tissue expression. Creatine kinase as a model system. J Mol Evol. 1978 Oct 27;12(1):25–55. doi: 10.1007/BF01732544. [DOI] [PubMed] [Google Scholar]
- Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974 Sep 6;185(4154):862–864. doi: 10.1126/science.185.4154.862. [DOI] [PubMed] [Google Scholar]
- Hughes A. L., Hughes M. K. Adaptive evolution in the rat olfactory receptor gene family. J Mol Evol. 1993 Mar;36(3):249–254. doi: 10.1007/BF00160480. [DOI] [PubMed] [Google Scholar]
- Hughes A. L. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994 May 23;256(1346):119–124. doi: 10.1098/rspb.1994.0058. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Taylor W. R., Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992 Jun;8(3):275–282. doi: 10.1093/bioinformatics/8.3.275. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kolb E., Harris J. I., Bridgen J. Triose phosphate isomerase from the coelacanth. An approach to the rapid determination of an amino acid sequence with small amounts of material. Biochem J. 1974 Feb;137(2):185–197. doi: 10.1042/bj1370185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuraku S., Hoshiyama D., Katoh K., Suga H., Miyata T. Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J Mol Evol. 1999 Dec;49(6):729–735. doi: 10.1007/pl00006595. [DOI] [PubMed] [Google Scholar]
- Maquat L. E., Chilcote R., Ryan P. M. Human triosephosphate isomerase cDNA and protein structure. Studies of triosephosphate isomerase deficiency in man. J Biol Chem. 1985 Mar 25;260(6):3748–3753. [PubMed] [Google Scholar]
- Marangos P. J., Schmechel D. E. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–295. doi: 10.1146/annurev.ne.10.030187.001413. [DOI] [PubMed] [Google Scholar]
- Neidert A. H., Virupannavar V., Hooker G. W., Langeland J. A. Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1665–1670. doi: 10.1073/pnas.98.4.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikoh N., Iwabe N., Kuma K., Ohno M., Sugiyama T., Watanabe Y., Yasui K., Shi-cui Z., Hori K., Shimura Y. An estimate of divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. J Mol Evol. 1997 Jul;45(1):97–106. doi: 10.1007/pl00006208. [DOI] [PubMed] [Google Scholar]
- Ohta T. Multigene families and the evolution of complexity. J Mol Evol. 1991 Jul;33(1):34–41. doi: 10.1007/BF02100193. [DOI] [PubMed] [Google Scholar]
- Old S. E., Mohrenweiser H. W. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta. Nucleic Acids Res. 1988 Sep 26;16(18):9055–9055. doi: 10.1093/nar/16.18.9055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peetz E. W., Thomson G., Hedrick P. W. Charge changes in protein evolution. Mol Biol Evol. 1986 Jan;3(1):84–94. doi: 10.1093/oxfordjournals.molbev.a040378. [DOI] [PubMed] [Google Scholar]
- Penhoet E., Rajkumar T., Rutter W. J. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1275–1282. doi: 10.1073/pnas.56.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pontier P. J., Hart N. H. Developmental expression of glucose and triose phosphate isomerase genes in teleost fishes (brachydanio). J Exp Zool. 1981 Jul;217(1):53–71. doi: 10.1002/jez.1402170107. [DOI] [PubMed] [Google Scholar]
- Quattro J. M., Pollock D. D., Powell M., Woods H. A., Powers D. A. Evolutionary relations among vertebrate muscle-type lactate dehydrogenases. Mol Mar Biol Biotechnol. 1995 Sep;4(3):224–231. [PubMed] [Google Scholar]
- Quattro J. M., Woods H. A., Powers D. A. Sequence analysis of teleost retina-specific lactate dehydrogenase C: evolutionary implications for the vertebrate lactate dehydrogenase gene family. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):242–246. doi: 10.1073/pnas.90.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Stock D. W., Ellies D. L., Zhao Z., Ekker M., Ruddle F. H., Weiss K. M. The evolution of the vertebrate Dlx gene family. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10858–10863. doi: 10.1073/pnas.93.20.10858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock D. W., Quattro J. M., Whitt G. S., Powers D. A. Lactate dehydrogenase (LDH) gene duplication during chordate evolution: the cDNA sequence of the LDH of the tunicate Styela plicata. Mol Biol Evol. 1997 Dec;14(12):1273–1284. doi: 10.1093/oxfordjournals.molbev.a025737. [DOI] [PubMed] [Google Scholar]
- Straus D., Gilbert W. Genetic engineering in the Precambrian: structure of the chicken triosephosphate isomerase gene. Mol Cell Biol. 1985 Dec;5(12):3497–3506. doi: 10.1128/mcb.5.12.3497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierenga R. K., Noble M. E., Vriend G., Nauche S., Hol W. G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol. 1991 Aug 20;220(4):995–1015. doi: 10.1016/0022-2836(91)90368-g. [DOI] [PubMed] [Google Scholar]
- Willett C. S. Evidence for directional selection acting on pheromone-binding proteins in the genus Choristoneura. Mol Biol Evol. 2000 Apr;17(4):553–562. doi: 10.1093/oxfordjournals.molbev.a026335. [DOI] [PubMed] [Google Scholar]
- Xia X., Li W. H. What amino acid properties affect protein evolution? J Mol Evol. 1998 Nov;47(5):557–564. doi: 10.1007/pl00006412. [DOI] [PubMed] [Google Scholar]
- Zhang J., Kumar S., Nei M. Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol Biol Evol. 1997 Dec;14(12):1335–1338. doi: 10.1093/oxfordjournals.molbev.a025743. [DOI] [PubMed] [Google Scholar]
- Zhang J., Rosenberg H. F., Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708–3713. doi: 10.1073/pnas.95.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]