Skip to main content
Genetics logoLink to Genetics
. 2001 Oct;159(2):869–882. doi: 10.1093/genetics/159.2.869

A general polyploid model for analyzing gene segregation in outcrossing tetraploid species.

R Wu 1, M Gallo-Meagher 1, R C Littell 1, Z B Zeng 1
PMCID: PMC1461840  PMID: 11606559

Abstract

Polyploidy has played an important role in higher plant evolution and applied plant breeding. Polyploids are commonly categorized as allopolyploids resulting from the increase of chromosome number through hybridization and subsequent chromosome doubling or autopolyploids due to chromosome doubling of the same genome. Allopolyploids undergo bivalent pairing at meiosis because only homologous chromosomes pair. For autopolyploids, however, all homologous chromosomes can pair at the same time so that multivalents and, therefore, double reductions are formed. In this article, we use a maximum-likelihood method to develop a general polyploid model for estimating gene segregation patterns from molecular markers in a full-sib family derived from an arbitrary polyploid combining meiotic behaviors of both bivalent and multivalent pairings. Two meiotic parameters, one describing the preference of homologous chromosome pairing (expressed as the preferential pairing factor) typical of allopolyploids and the other specifying the degree of double reduction of autopolyploids, are estimated. The type of molecular markers used can be fully informative vs. partially informative or dominant vs. codominant. Simulation studies show that our polyploid model is well suited to estimate the preferential pairing factor and the frequency of double reduction at meiosis, which should help to characterize gene segregation in the progeny of autopolyploids. The implications of this model for linkage mapping, population genetic studies, and polyploid classification are discussed.

Full Text

The Full Text of this article is available as a PDF (171.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf F. W., Danzmann R. G. Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics. 1997 Apr;145(4):1083–1092. doi: 10.1093/genetics/145.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butruille D. V., Boiteux L. S. Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6608–6613. doi: 10.1073/pnas.100101097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grivet L., D'Hont A., Roques D., Feldmann P., Lanaud C., Glaszmann J. C. RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics. 1996 Mar;142(3):987–1000. doi: 10.1093/genetics/142.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hickok L. G. Homoeologous chromosome pairing: frequency differences in inbred and intraspecific hybrid polyploid ferns. Science. 1978 Dec 1;202(4371):982–984. doi: 10.1126/science.202.4371.982. [DOI] [PubMed] [Google Scholar]
  5. Khawaja H. I., Ellis J. R., Sybenga J. Cytogenetics of Lathyrus palustris, a natural autohexaploid. Genome. 1995 Aug;38(4):827–831. doi: 10.1139/g95-107. [DOI] [PubMed] [Google Scholar]
  6. Marsden J. E., Schwager S. J., May B. Single-Locus Inheritance in the Tetraploid Treefrog Hyla versicolor with an Analysis of Expected Progeny Ratios in Tetraploid Organisms. Genetics. 1987 Jun;116(2):299–311. doi: 10.1093/genetics/116.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science. 1994 Apr 15;264(5157):421–424. doi: 10.1126/science.264.5157.421. [DOI] [PubMed] [Google Scholar]
  8. Meyer R. C., Milbourne D., Hackett C. A., Bradshaw J. E., McNichol J. W., Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet. 1998 Aug;259(2):150–160. doi: 10.1007/s004380050800. [DOI] [PubMed] [Google Scholar]
  9. Ming R., Liu S. C., Lin Y. R., da Silva J., Wilson W., Braga D., van Deynze A., Wenslaff T. F., Wu K. K., Moore P. H. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics. 1998 Dec;150(4):1663–1682. doi: 10.1093/genetics/150.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ripol M. I., Churchill G. A., da Silva J. A., Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene. 1999 Jul 22;235(1-2):31–41. doi: 10.1016/s0378-1119(99)00218-8. [DOI] [PubMed] [Google Scholar]
  11. Ronfort J., Jenczewski E., Bataillon T., Rousset F. Analysis of population structure in autotetraploid species. Genetics. 1998 Oct;150(2):921–930. doi: 10.1093/genetics/150.2.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Silva J. A., Sorrells M. E., Burnquist W. L., Tanksley S. D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome. 1993 Aug;36(4):782–791. doi: 10.1139/g93-103. [DOI] [PubMed] [Google Scholar]
  13. Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol. 1999 Sep;14(9):348–352. doi: 10.1016/s0169-5347(99)01638-9. [DOI] [PubMed] [Google Scholar]
  14. Soltis P. S., Soltis D. E. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7051–7057. doi: 10.1073/pnas.97.13.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sybenga J. Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome. 1996 Dec;39(6):1176–1184. doi: 10.1139/g96-148. [DOI] [PubMed] [Google Scholar]
  16. Sybenga J. Preferential pairing estimates from multivalent frequencies in tetraploids. Genome. 1994 Dec;37(6):1045–1055. doi: 10.1139/g94-149. [DOI] [PubMed] [Google Scholar]
  17. Sybenga J. What makes homologous chromosomes find each other in meiosis? A review and an hypothesis. Chromosoma. 1999 Aug;108(4):209–219. doi: 10.1007/s004120050371. [DOI] [PubMed] [Google Scholar]
  18. Welch J E. Linkage in Autotetraploid Maize. Genetics. 1962 Apr;47(4):367–396. doi: 10.1093/genetics/47.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yu K. F., Pauls K. P. Segregation of random amplified polymorphic DNA markers and strategies for molecular mapping in tetraploid alfalfa. Genome. 1993 Oct;36(5):844–851. doi: 10.1139/g93-112. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES