Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1163–1178. doi: 10.1093/genetics/159.3.1163

Pooling analysis of genetic data: the association of leptin receptor (LEPR) polymorphisms with variables related to human adiposity.

M Heo 1, R L Leibel 1, B B Boyer 1, W K Chung 1, M Koulu 1, M K Karvonen 1, U Pesonen 1, A Rissanen 1, M Laakso 1, M I Uusitupa 1, Y Chagnon 1, C Bouchard 1, P A Donohoue 1, T L Burns 1, A R Shuldiner 1, K Silver 1, R E Andersen 1, O Pedersen 1, S Echwald 1, T I Sørensen 1, P Behn 1, M A Permutt 1, K B Jacobs 1, R C Elston 1, D J Hoffman 1, D B Allison 1
PMCID: PMC1461868  PMID: 11729160

Abstract

Analysis of raw pooled data from distinct studies of a single question generates a single statistical conclusion with greater power and precision than conventional metaanalysis based on within-study estimates. However, conducting analyses with pooled genetic data, in particular, is a daunting task that raises important statistical issues. In the process of analyzing data pooled from nine studies on the human leptin receptor (LEPR) gene for the association of three alleles (K109R, Q223R, and K656N) of LEPR with body mass index (BMI; kilograms divided by the square of the height in meters) and waist circumference (WC), we encountered the following methodological challenges: data on relatives, missing data, multivariate analysis, multiallele analysis at multiple loci, heterogeneity, and epistasis. We propose herein statistical methods and procedures to deal with such issues. With a total of 3263 related and unrelated subjects from diverse ethnic backgrounds such as African-American, Caucasian, Danish, Finnish, French-Canadian, and Nigerian, we tested effects of individual alleles; joint effects of alleles at multiple loci; epistatic effects among alleles at different loci; effect modification by age, sex, diabetes, and ethnicity; and pleiotropic genotype effects on BMI and WC. The statistical methodologies were applied, before and after multiple imputation of missing observations, to pooled data as well as to individual data sets for estimates from each study, the latter leading to a metaanalysis. The results from the metaanalysis and the pooling analysis showed that none of the effects were significant at the 0.05 level of significance. Heterogeneity tests showed that the variations of the nonsignificant effects are within the range of sampling variation. Although certain genotypic effects could be population specific, there was no statistically compelling evidence that any of the three LEPR alleles is associated with BMI or waist circumference in the general population.

Full Text

The Full Text of this article is available as a PDF (124.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott A. Manhattan versus Reykjavik. Nature. 2000 Jul 27;406(6794):340–342. doi: 10.1038/35019167. [DOI] [PubMed] [Google Scholar]
  2. Allison D. B., Heo M., Kaplan N., Martin E. R. Sibling-based tests of linkage and association for quantitative traits. Am J Hum Genet. 1999 Jun;64(6):1754–1763. doi: 10.1086/302404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allison D. B., Thiel B., St Jean P., Elston R. C., Infante M. C., Schork N. J. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am J Hum Genet. 1998 Oct;63(4):1190–1201. doi: 10.1086/302038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amos C. I., Elston R. C., Bonney G. E., Keats B. J., Berenson G. S. A multivariate method for detecting genetic linkage, with application to a pedigree with an adverse lipoprotein phenotype. Am J Hum Genet. 1990 Aug;47(2):247–254. [PMC free article] [PubMed] [Google Scholar]
  5. Chagnon Y. C., Chung W. K., Pérusse L., Chagnon M., Leibel R. L., Bouchard C. Linkages and associations between the leptin receptor (LEPR) gene and human body composition in the Québec Family Study. Int J Obes Relat Metab Disord. 1999 Mar;23(3):278–286. doi: 10.1038/sj.ijo.0800809. [DOI] [PubMed] [Google Scholar]
  6. Chagnon Y. C., Wilmore J. H., Borecki I. B., Gagnon J., Pérusse L., Chagnon M., Collier G. R., Leon A. S., Skinner J. S., Rao D. C. Associations between the leptin receptor gene and adiposity in middle-aged Caucasian males from the HERITAGE family study. J Clin Endocrinol Metab. 2000 Jan;85(1):29–34. doi: 10.1210/jcem.85.1.6263. [DOI] [PubMed] [Google Scholar]
  7. Chua S. C., Jr, Chung W. K., Wu-Peng X. S., Zhang Y., Liu S. M., Tartaglia L., Leibel R. L. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996 Feb 16;271(5251):994–996. doi: 10.1126/science.271.5251.994. [DOI] [PubMed] [Google Scholar]
  8. Chung W. K., Power-Kehoe L., Chua M., Chu F., Aronne L., Huma Z., Sothern M., Udall J. N., Kahle B., Leibel R. L. Exonic and intronic sequence variation in the human leptin receptor gene (LEPR). Diabetes. 1997 Sep;46(9):1509–1511. doi: 10.2337/diab.46.9.1509. [DOI] [PubMed] [Google Scholar]
  9. Clément K., Vaisse C., Lahlou N., Cabrol S., Pelloux V., Cassuto D., Gourmelen M., Dina C., Chambaz J., Lacorte J. M. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398–401. doi: 10.1038/32911. [DOI] [PubMed] [Google Scholar]
  10. Comuzzie A. G., Allison D. B. The search for human obesity genes. Science. 1998 May 29;280(5368):1374–1377. doi: 10.1126/science.280.5368.1374. [DOI] [PubMed] [Google Scholar]
  11. Echwald S. M., Sørensen T. D., Sørensen T. I., Tybjaerg-Hansen A., Andersen T., Chung W. K., Leibel R. L., Pedersen O. Amino acid variants in the human leptin receptor: lack of association to juvenile onset obesity. Biochem Biophys Res Commun. 1997 Apr 7;233(1):248–252. doi: 10.1006/bbrc.1997.6430. [DOI] [PubMed] [Google Scholar]
  12. Elston R. C., Buxbaum S., Jacobs K. B., Olson J. M. Haseman and Elston revisited. Genet Epidemiol. 2000 Jul;19(1):1–17. doi: 10.1002/1098-2272(200007)19:1<1::AID-GEPI1>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  13. Elston R. C. Introduction and overview. Statistical methods in genetic epidemiology. Stat Methods Med Res. 2000 Dec;9(6):527–541. doi: 10.1177/096228020000900602. [DOI] [PubMed] [Google Scholar]
  14. Fallin D., Cohen A., Essioux L., Chumakov I., Blumenfeld M., Cohen D., Schork N. J. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res. 2001 Jan;11(1):143–151. doi: 10.1101/gr.148401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fallin D., Schork N. J. Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization algorithm for unphased diploid genotype data. Am J Hum Genet. 2000 Aug 22;67(4):947–959. doi: 10.1086/303069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. George V. T., Elston R. C. Testing the association between polymorphic markers and quantitative traits in pedigrees. Genet Epidemiol. 1987;4(3):193–201. doi: 10.1002/gepi.1370040304. [DOI] [PubMed] [Google Scholar]
  17. Gotoda T., Manning B. S., Goldstone A. P., Imrie H., Evans A. L., Strosberg A. D., McKeigue P. M., Scott J., Aitman T. J. Leptin receptor gene variation and obesity: lack of association in a white British male population. Hum Mol Genet. 1997 Jun;6(6):869–876. doi: 10.1093/hmg/6.6.869. [DOI] [PubMed] [Google Scholar]
  18. Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
  19. Matsuoka N., Ogawa Y., Hosoda K., Matsuda J., Masuzaki H., Miyawaki T., Azuma N., Natsui K., Nishimura H., Yoshimasa Y. Human leptin receptor gene in obese Japanese subjects: evidence against either obesity-causing mutations or association of sequence variants with obesity. Diabetologia. 1997 Oct;40(10):1204–1210. doi: 10.1007/s001250050808. [DOI] [PubMed] [Google Scholar]
  20. Oksanen L., Kaprio J., Mustajoki P., Kontula K. A common pentanucleotide polymorphism of the 3'-untranslated part of the leptin receptor gene generates a putative stem-loop motif in the mRNA and is associated with serum insulin levels in obese individuals. Int J Obes Relat Metab Disord. 1998 Jul;22(7):634–640. doi: 10.1038/sj.ijo.0800639. [DOI] [PubMed] [Google Scholar]
  21. Olkin I., Sampson A. Comparison of meta-analysis versus analysis of variance of individual patient data. Biometrics. 1998 Mar;54(1):317–322. [PubMed] [Google Scholar]
  22. Rolland-Cachera M. F., Sempé M., Guilloud-Bataille M., Patois E., Péquignot-Guggenbuhl F., Fautrad V. Adiposity indices in children. Am J Clin Nutr. 1982 Jul;36(1):178–184. doi: 10.1093/ajcn/36.1.178. [DOI] [PubMed] [Google Scholar]
  23. Silver K., Walston J., Chung W. K., Yao F., Parikh V. V., Andersen R., Cheskin L. J., Elahi D., Muller D., Leibel R. L. The Gln223Arg and Lys656Asn polymorphisms in the human leptin receptor do not associate with traits related to obesity. Diabetes. 1997 Nov;46(11):1898–1900. doi: 10.2337/diab.46.11.1898. [DOI] [PubMed] [Google Scholar]
  24. Tanizawa Y., Riggs A. C., Dagogo-Jack S., Vaxillaire M., Froguel P., Liu L., Donis-Keller H., Permutt M. A. Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]. Diabetes. 1994 Jul;43(7):935–941. doi: 10.2337/diab.43.7.935. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES