Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1179–1189. doi: 10.1093/genetics/159.3.1179

Female meiosis drives karyotypic evolution in mammals.

F Pardo-Manuel de Villena 1, C Sapienza 1
PMCID: PMC1461872  PMID: 11729161

Abstract

Speciation is often accompanied by changes in chromosomal number or form even though such changes significantly reduce the fertility of hybrid intermediates. We have addressed this evolutionary paradox by expanding the principle that nonrandom segregation of chromosomes takes place whenever human or mouse females are heterozygous carriers of Robertsonian translocations, a common form of chromosome rearrangement in mammals. Our analysis of 1170 mammalian karyotypes provides strong evidence that karyotypic evolution is driven by nonrandom segregation during female meiosis. The pertinent variable in this form of meiotic drive is the presence of differing numbers of centromeres on paired homologous chromosomes. This situation is encountered in all heterozygous carriers of Robertsonian translocations. Whenever paired chromosomes have different numbers of centromeres, the inherent asymmetry of female meiosis and the polarity of the meiotic spindle dictate that the partner with the greater number of centromeres will attach preferentially to the pole that is most efficient at capturing centromeres. This mechanism explains how chromosomal variants become fixed in populations, as well as why closely related species often appear to have evolved by directional adjustment of the karyotype toward or away from a particular chromosome form. If differences in the ability of particular DNA sequences or chromosomal regions to function as centromeres are also considered, nonrandom segregation is likely to affect karyotype evolution across a very broad phylogenetic range.

Full Text

The Full Text of this article is available as a PDF (145.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler I. D., Johannisson R., Winking H. The influence of the Robertsonian translocation Rb(X.2)2Ad on anaphase I non-disjunction in male laboratory mice. Genet Res. 1989 Apr;53(2):77–86. doi: 10.1017/s0016672300027944. [DOI] [PubMed] [Google Scholar]
  2. Agulnik S. I., Agulnik A. I., Ruvinsky A. O. Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genet Res. 1990 Apr;55(2):97–100. doi: 10.1017/s0016672300025325. [DOI] [PubMed] [Google Scholar]
  3. Aranha I. P., Martin-DeLeon P. A. Segregation analysis of the mouse Rb(6.16) translocation in zygotes produced by heterozygous female carriers. Cytogenet Cell Genet. 1994;66(1):51–53. doi: 10.1159/000133663. [DOI] [PubMed] [Google Scholar]
  4. Benirschke K., Rüedi D., Müller H., Kumamoto A. T., Wagner K. L., Downes H. S. The unusual karyotype of the lesser kudu, Tragelaphus imberbis. Cytogenet Cell Genet. 1980;26(2-4):85–92. doi: 10.1159/000131429. [DOI] [PubMed] [Google Scholar]
  5. Boué A., Boué J., Gropp A. Cytogenetics of pregnancy wastage. Adv Hum Genet. 1985;14:1–57. doi: 10.1007/978-1-4615-9400-0_1. [DOI] [PubMed] [Google Scholar]
  6. Britton-Davidian J., Catalan J., da Graça Ramalhinho M., Ganem G., Auffray J. C., Capela R., Biscoito M., Searle J. B., da Luz Mathias M. Rapid chromosomal evolution in island mice. Nature. 2000 Jan 13;403(6766):158–158. doi: 10.1038/35003116. [DOI] [PubMed] [Google Scholar]
  7. Britton-Davidian J., Nadeau J. H., Croset H., Thaler L. Genic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genet Res. 1989 Feb;53(1):29–44. doi: 10.1017/s0016672300027841. [DOI] [PubMed] [Google Scholar]
  8. Britton-Davidian J., Sonjaya H., Catalan J., Cattaneo-Berrebi G. Robertsonian heterozygosity in wild mice: fertility and transmission rates in Rb(16.17) translocation heterozygotes. Genetica. 1990;80(3):171–174. doi: 10.1007/BF00137322. [DOI] [PubMed] [Google Scholar]
  9. Buckler E. S., 4th, Phelps-Durr T. L., Buckler C. S., Dawe R. K., Doebley J. F., Holtsford T. P. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics. 1999 Sep;153(1):415–426. doi: 10.1093/genetics/153.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cano M. I., Santos J. L. Cytological basis of the B chromosome accumulation mechanism in the grasshopper Heteracris littoralis (Ramb). Heredity (Edinb) 1989 Feb;62(Pt 1):91–95. doi: 10.1038/hdy.1989.12. [DOI] [PubMed] [Google Scholar]
  11. Chayko C. A., Martin-DeLeon P. A. The murine Rb(6.16) translocation: alterations in the proportion of alternate sperm segregants effecting fertilization in vitro and in vivo. Hum Genet. 1992 Sep-Oct;90(1-2):79–85. doi: 10.1007/BF00210748. [DOI] [PubMed] [Google Scholar]
  12. Crow J. F. A new study challenges the current belief of a high human male:female mutation ratio. Trends Genet. 2000 Dec;16(12):525–526. doi: 10.1016/s0168-9525(00)02136-3. [DOI] [PubMed] [Google Scholar]
  13. Davisson M. T., Akeson E. C. Recombination suppression by heterozygous Robertsonian chromosomes in the mouse. Genetics. 1993 Mar;133(3):649–667. doi: 10.1093/genetics/133.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dinkel B. J., O'Laughlin-Phillips E. A., Fechheimer N. S., Jaap R. G. Gametic products transmitted by chickens heterozygous for chromosomal rearrangements. Cytogenet Cell Genet. 1979;23(1-2):124–136. doi: 10.1159/000131313. [DOI] [PubMed] [Google Scholar]
  15. Earnshaw W. C., Ratrie H., 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. doi: 10.1007/BF00293329. [DOI] [PubMed] [Google Scholar]
  16. Elsevier Trends Journals Online access to trends in endocrinology and metabolism. Trends Endocrinol Metab. 1999 May;10(4):121–121. doi: 10.1016/s1043-2760(99)00152-6. [DOI] [PubMed] [Google Scholar]
  17. Evans E. P., Lyon M. F., Daglish M. A mouse translocation giving a metacentric marker chromosome. Cytogenetics. 1967;6(2):105–119. doi: 10.1159/000129933. [DOI] [PubMed] [Google Scholar]
  18. Everett C. A., Searle J. B. Pattern and frequency of nocodazole induced meiotic nondisjunction in oocytes of mice carrying the 'tobacco mouse' metacentric Rb(16.17)7Bnr. Genet Res. 1995 Aug;66(1):35–43. doi: 10.1017/s0016672300034376. [DOI] [PubMed] [Google Scholar]
  19. Fredga K. Comparative chromosome studies in mongooses (Carnivora, Viverridae). I. Idiograms of 12 species and karyotype evolution in Herpestinae. Hereditas. 1972;71(1):1–74. [PubMed] [Google Scholar]
  20. Fuge H. Unorthodox male meiosis in Trichosia pubescens (Sciaridae). Chromosome elimination involves polar organelle degeneration and monocentric spindles in first and second division. J Cell Sci. 1994 Jan;107(Pt 1):299–312. doi: 10.1242/jcs.107.1.299. [DOI] [PubMed] [Google Scholar]
  21. Hamerton J. L., Canning N., Ray M., Smith S. A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet. 1975 Oct;8(4):223–243. doi: 10.1111/j.1399-0004.1975.tb01498.x. [DOI] [PubMed] [Google Scholar]
  22. Harris M. J., Wallace M. E., Evans E. P. Aneuploidy in the embryonic progeny of females heterozygous for the Robertsonian chromosome (9.12) in genetically wild Peru-Coppock mice (Mus musculus). J Reprod Fertil. 1986 Jan;76(1):193–203. doi: 10.1530/jrf.0.0760193. [DOI] [PubMed] [Google Scholar]
  23. Karpen G. H., Allshire R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 1997 Dec;13(12):489–496. doi: 10.1016/s0168-9525(97)01298-5. [DOI] [PubMed] [Google Scholar]
  24. Kaufman M. H. Non-random segregation during mammalian oogenesis. Nature. 1972 Aug 25;238(5365):465–466. doi: 10.1038/238465a0. [DOI] [PubMed] [Google Scholar]
  25. LeMaire-Adkins R., Hunt P. A. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics. 2000 Oct;156(2):775–783. doi: 10.1093/genetics/156.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malik H. S., Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics. 2001 Mar;157(3):1293–1298. doi: 10.1093/genetics/157.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murphy W. J., Eizirik E., Johnson W. E., Zhang Y. P., Ryder O. A., O'Brien S. J. Molecular phylogenetics and the origins of placental mammals. Nature. 2001 Feb 1;409(6820):614–618. doi: 10.1038/35054550. [DOI] [PubMed] [Google Scholar]
  28. NOVITSKI E. Genetic measures of centromere activity in Drosophila melanogaster. J Cell Physiol Suppl. 1955 May;45(Suppl 2):151–169. doi: 10.1002/jcp.1030450509. [DOI] [PubMed] [Google Scholar]
  29. NOVITSKI E. Non-random disjunction in Drosophila. Genetics. 1951 May;36(3):267–280. doi: 10.1093/genetics/36.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nachman M. W., Boyer S. N., Searle J. B., Aquadro C. F. Mitochondrial DNA variation and the evolution of Robertsonian chromosomal races of house mice, Mus domesticus. Genetics. 1994 Mar;136(3):1105–1120. doi: 10.1093/genetics/136.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pacchierotti F., Tiveron C., Mailhes J. B., Davisson M. T. Susceptibility to vinblastine-induced aneuploidy and preferential chromosome segregation during meiosis I in Robertsonian heterozygous mice. Teratog Carcinog Mutagen. 1995;15(5):217–230. doi: 10.1002/tcm.1770150502. [DOI] [PubMed] [Google Scholar]
  32. Page S. L., Earnshaw W. C., Choo K. H., Shaffer L. G. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet. 1995 Feb;4(2):289–294. doi: 10.1093/hmg/4.2.289. [DOI] [PubMed] [Google Scholar]
  33. Pardo-Manuel de Villena F., Sapienza C. Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome. 2001 May;12(5):331–339. doi: 10.1007/s003350040003. [DOI] [PubMed] [Google Scholar]
  34. Pardo-Manuel de Villena F., Sapienza C. Recombination is proportional to the number of chromosome arms in mammals. Mamm Genome. 2001 Apr;12(4):318–322. doi: 10.1007/s003350020005. [DOI] [PubMed] [Google Scholar]
  35. Pardo-Manuel de Villena F., Sapienza C. Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet. 2001 Jan;108(1):31–36. doi: 10.1007/s004390000437. [DOI] [PubMed] [Google Scholar]
  36. Pardo-Manuel de Villena F., de la Casa-Esperon E., Briscoe T. L., Sapienza C. A genetic test to determine the origin of maternal transmission ratio distortion. Meiotic drive at the mouse Om locus. Genetics. 2000 Jan;154(1):333–342. doi: 10.1093/genetics/154.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peacock W. J., Dennis E. S., Rhoades M. M., Pryor A. J. Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4490–4494. doi: 10.1073/pnas.78.7.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Purvis A., Hector A. Getting the measure of biodiversity. Nature. 2000 May 11;405(6783):212–219. doi: 10.1038/35012221. [DOI] [PubMed] [Google Scholar]
  39. Qumsiyeh M. B. Evolution of number and morphology of mammalian chromosomes. J Hered. 1994 Nov-Dec;85(6):455–465. doi: 10.1093/oxfordjournals.jhered.a111501. [DOI] [PubMed] [Google Scholar]
  40. Rhoades M. M., Dempsey E. The Effect of Abnormal Chromosome 10 on Preferential Segregation and Crossing over in Maize. Genetics. 1966 May;53(5):989–1020. doi: 10.1093/genetics/53.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rhoades M. M., Vilkomerson H. On the Anaphase Movement of Chromosomes. Proc Natl Acad Sci U S A. 1942 Oct;28(10):433–436. doi: 10.1073/pnas.28.10.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ruvinsky A. O., Agulnik S. I., Agulnik A. I., Belyaev D. K. The influence of mutations on chromosome 17 upon the segregation of homologues in female mice heterozygous for Robertsonian translocations. Genet Res. 1987 Dec;50(3):235–237. doi: 10.1017/s0016672300023752. [DOI] [PubMed] [Google Scholar]
  43. Sakurada K., Omoe K., Endo A. Increased incidence of unpartnered single chromatids in metaphase II oocytes in 39,X(XO) mice. Experientia. 1994 May 15;50(5):502–505. doi: 10.1007/BF01920758. [DOI] [PubMed] [Google Scholar]
  44. Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sánchez E. R., Erickson R. P. Wild-derived Robertsonian translocation in mice. Chromosome 17, Rb (16:17)7, shows novel interactions with t-alleles. J Hered. 1986 Sep-Oct;77(5):290–294. doi: 10.1093/oxfordjournals.jhered.a110244. [DOI] [PubMed] [Google Scholar]
  46. Tease C., Fisher G. Two new X-autosome Robertsonian translocations in the mouse. I. Meiotic chromosome segregation in male hemizygotes and female heterozygotes. Genet Res. 1991 Oct;58(2):115–121. doi: 10.1017/s0016672300029761. [DOI] [PubMed] [Google Scholar]
  47. Vassart M., Séguéla A., Hayes H. Chromosomal evolution in gazelles. J Hered. 1995 May-Jun;86(3):216–227. doi: 10.1093/oxfordjournals.jhered.a111565. [DOI] [PubMed] [Google Scholar]
  48. Viroux M. C., Bauchau V. Segregation and fertility in Mus musculus domesticus (wild mice) heterozygous for the Rb(4.12) translocation. Heredity (Edinb) 1992 Feb;68(Pt 2):131–134. doi: 10.1038/hdy.1992.20. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES