Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):997–1006. doi: 10.1093/genetics/159.3.997

Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans.

R Branicky 1, Y Shibata 1, J Feng 1, S Hekimi 1
PMCID: PMC1461884  PMID: 11729148

Abstract

Mutations in the Caenorhabditis elegans maternal-effect gene clk-1 affect cellular, developmental, and behavioral timing. They result in a slowing of the cell cycle, embryonic and postembryonic development, reproduction, and aging, as well as of the defecation, swimming, and pharyngeal pumping cycles. Here, we analyze the defecation behavior in clk-1 mutants, phenotypically and genetically. When wild-type worms are grown at 20 degrees and shifted to a new temperature, the defecation cycle length is significantly affected by that new temperature. In contrast, we find that when clk-1 mutants are shifted, the defecation cycle length is unaffected by that new temperature. We carried out a screen for mutations that suppress the slow defecation phenotype at 20 degrees and identified two distinct classes of genes, which we call dsc for defecation suppressor of clk-1. Mutations in one class also restore the ability to react normally to changes in temperature, while mutations in the other class do not. Together, these results suggest that clk-1 is necessary for readjusting the defecation cycle length in response to changes in temperature. On the other hand, in the absence of clk-1 activity, we observe temperature compensation, a mechanism that maintains a constant defecation period in the face of changes in temperature.

Full Text

The Full Text of this article is available as a PDF (267.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avery L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):897–917. doi: 10.1093/genetics/133.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braeckman B. P., Houthoofd K., De Vreese A., Vanfleteren J. R. Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol. 1999 May 6;9(9):493–496. doi: 10.1016/s0960-9822(99)80216-4. [DOI] [PubMed] [Google Scholar]
  3. Branicky R., Bénard C., Hekimi S. clk-1, mitochondria, and physiological rates. Bioessays. 2000 Jan;22(1):48–56. doi: 10.1002/(SICI)1521-1878(200001)22:1<48::AID-BIES9>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  4. Dallner G., Sindelar P. J. Regulation of ubiquinone metabolism. Free Radic Biol Med. 2000 Aug;29(3-4):285–294. doi: 10.1016/s0891-5849(00)00307-5. [DOI] [PubMed] [Google Scholar]
  5. Echtay K. S., Winkler E., Frischmuth K., Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1416–1421. doi: 10.1073/pnas.98.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Echtay K. S., Winkler E., Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000 Nov 30;408(6812):609–613. doi: 10.1038/35046114. [DOI] [PubMed] [Google Scholar]
  7. Ellis R. E., Horvitz H. R. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development. 1991 Jun;112(2):591–603. doi: 10.1242/dev.112.2.591. [DOI] [PubMed] [Google Scholar]
  8. Ewbank J. J., Barnes T. M., Lakowski B., Lussier M., Bussey H., Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997 Feb 14;275(5302):980–983. doi: 10.1126/science.275.5302.980. [DOI] [PubMed] [Google Scholar]
  9. Fontaine E., Ichas F., Bernardi P. A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem. 1998 Oct 2;273(40):25734–25740. doi: 10.1074/jbc.273.40.25734. [DOI] [PubMed] [Google Scholar]
  10. Gille L., Nohl H. The existence of a lysosomal redox chain and the role of ubiquinone. Arch Biochem Biophys. 2000 Mar 15;375(2):347–354. doi: 10.1006/abbi.1999.1649. [DOI] [PubMed] [Google Scholar]
  11. Hekimi S., Boutis P., Lakowski B. Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1351–1364. doi: 10.1093/genetics/141.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwasaki K., Liu D. W., Thomas J. H. Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10317–10321. doi: 10.1073/pnas.92.22.10317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jonassen T., Larsen P. L., Clarke C. F. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci U S A. 2001 Jan 2;98(2):421–426. doi: 10.1073/pnas.021337498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jonassen T., Marbois B. N., Kim L., Chin A., Xia Y. R., Lusis A. J., Clarke C. F. Isolation and sequencing of the rat Coq7 gene and the mapping of mouse Coq7 to chromosome 7. Arch Biochem Biophys. 1996 Jun 15;330(2):285–289. doi: 10.1006/abbi.1996.0255. [DOI] [PubMed] [Google Scholar]
  15. Katsura I., Kondo K., Amano T., Ishihara T., Kawakami M. Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans. Genetics. 1994 Jan;136(1):145–154. doi: 10.1093/genetics/136.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu D. W., Thomas J. H. Regulation of a periodic motor program in C. elegans. J Neurosci. 1994 Apr;14(4):1953–1962. doi: 10.1523/JNEUROSCI.14-04-01953.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marbois B. N., Clarke C. F. The COQ7 gene encodes a protein in saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem. 1996 Feb 9;271(6):2995–3004. doi: 10.1074/jbc.271.6.2995. [DOI] [PubMed] [Google Scholar]
  18. Miyadera H., Amino H., Hiraishi A., Taka H., Murayama K., Miyoshi H., Sakamoto K., Ishii N., Hekimi S., Kita K. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem. 2001 Jan 17;276(11):7713–7716. doi: 10.1074/jbc.C000889200. [DOI] [PubMed] [Google Scholar]
  19. Proft M., Kötter P., Hedges D., Bojunga N., Entian K. D. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae. EMBO J. 1995 Dec 15;14(24):6116–6126. doi: 10.1002/j.1460-2075.1995.tb00302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reiner D. J., Newton E. M., Tian H., Thomas J. H. Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature. 1999 Nov 11;402(6758):199–203. doi: 10.1038/46072. [DOI] [PubMed] [Google Scholar]
  21. Santos-Ocaña C., Villalba J. M., Córdoba F., Padilla S., Crane F. L., Clarke C. F., Navas P. Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. J Bioenerg Biomembr. 1998 Oct;30(5):465–475. doi: 10.1023/a:1020542230308. [DOI] [PubMed] [Google Scholar]
  22. Take-Uchi M., Kawakami M., Ishihara T., Amano T., Kondo K., Katsura I. An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11775–11780. doi: 10.1073/pnas.95.20.11775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thomas J. H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990 Apr;124(4):855–872. doi: 10.1093/genetics/124.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vajo Z., King L. M., Jonassen T., Wilkin D. J., Ho N., Munnich A., Clarke C. F., Francomano C. A. Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging. Mamm Genome. 1999 Oct;10(10):1000–1004. doi: 10.1007/s003359901147. [DOI] [PubMed] [Google Scholar]
  25. Wong A., Boutis P., Hekimi S. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES