Skip to main content
Genetics logoLink to Genetics
. 2001 Nov;159(3):1031–1044. doi: 10.1093/genetics/159.3.1031

Drosophila-raf acts to elaborate dorsoventral pattern in the ectoderm of developing embryos.

K Radke 1, K Johnson 1, R Guo 1, A Davidson 1, L Ambrosio 1
PMCID: PMC1461885  PMID: 11729151

Abstract

In the early Drosophila embryo the activity of the EGF-receptor (Egfr) is required to instruct cells to adopt a ventral neuroectodermal fate. Using a gain-of-function mutation we showed that D-raf acts to transmit this and other late-acting embryonic Egfr signals. A novel role for D-raf was also identified in lateral cell development using partial loss-of-function D-raf mutations. Thus, we provide evidence that zygotic D-raf acts to specify cell fates in two distinct pathways that generate dorsoventral pattern within the ectoderm. These functional requirements for D-raf activity occur subsequent to its maternal role in organizing the anterioposterior axis. The consequences of eliminating key D-raf regulatory domains and specific serine residues in the transmission of Egfr and lateral epidermal signals were also addressed here.

Full Text

The Full Text of this article is available as a PDF (441.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosio L., Mahowald A. P., Perrimon N. Requirement of the Drosophila raf homologue for torso function. Nature. 1989 Nov 16;342(6247):288–291. doi: 10.1038/342288a0. [DOI] [PubMed] [Google Scholar]
  2. Ambrosio L., Mahowald A. P., Perrimon N. l(1)pole hole is required maternally for pattern formation in the terminal regions of the embryo. Development. 1989 May;106(1):145–158. doi: 10.1242/dev.106.1.145. [DOI] [PubMed] [Google Scholar]
  3. Anderson K. V. Pinning down positional information: dorsal-ventral polarity in the Drosophila embryo. Cell. 1998 Nov 13;95(4):439–442. doi: 10.1016/s0092-8674(00)81610-4. [DOI] [PubMed] [Google Scholar]
  4. Andrew D. J., Baig A., Bhanot P., Smolik S. M., Henderson K. D. The Drosophila dCREB-A gene is required for dorsal/ventral patterning of the larval cuticle. Development. 1997 Jan;124(1):181–193. doi: 10.1242/dev.124.1.181. [DOI] [PubMed] [Google Scholar]
  5. Baek K. H., Ambrosio L. An efficient method for microinjection of mRNA into Drosophila embryos. Biotechniques. 1994 Dec;17(6):1024–1026. [PubMed] [Google Scholar]
  6. Baek K. H., Fabian J. R., Sprenger F., Morrison D. K., Ambrosio L. The activity of D-raf in torso signal transduction is altered by serine substitution, N-terminal deletion, and membrane targeting. Dev Biol. 1996 May 1;175(2):191–204. doi: 10.1006/dbio.1996.0107. [DOI] [PubMed] [Google Scholar]
  7. Bier E., Jan L. Y., Jan Y. N. rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev. 1990 Feb;4(2):190–203. doi: 10.1101/gad.4.2.190. [DOI] [PubMed] [Google Scholar]
  8. Blackshear P. J., Haupt D. M., App H., Rapp U. R. Insulin activates the Raf-1 protein kinase. J Biol Chem. 1990 Jul 25;265(21):12131–12134. [PubMed] [Google Scholar]
  9. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  10. Chang H. C., Rubin G. M. 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 1997 May 1;11(9):1132–1139. doi: 10.1101/gad.11.9.1132. [DOI] [PubMed] [Google Scholar]
  11. Chou T. B., Perrimon N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics. 1992 Jul;131(3):643–653. doi: 10.1093/genetics/131.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daum G., Eisenmann-Tappe I., Fries H. W., Troppmair J., Rapp U. R. The ins and outs of Raf kinases. Trends Biochem Sci. 1994 Nov;19(11):474–480. doi: 10.1016/0968-0004(94)90133-3. [DOI] [PubMed] [Google Scholar]
  13. Diaz-Benjumea F. J., Hafen E. The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development. 1994 Mar;120(3):569–578. doi: 10.1242/dev.120.3.569. [DOI] [PubMed] [Google Scholar]
  14. Dickson B., Hafen E. Genetics of signal transduction in invertebrates. Curr Opin Genet Dev. 1994 Feb;4(1):64–70. doi: 10.1016/0959-437x(94)90092-2. [DOI] [PubMed] [Google Scholar]
  15. Farrar M. A., Alberol-Ila J., Perlmutter R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 1996 Sep 12;383(6596):178–181. doi: 10.1038/383178a0. [DOI] [PubMed] [Google Scholar]
  16. Fernandez R., Tabarini D., Azpiazu N., Frasch M., Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J. 1995 Jul 17;14(14):3373–3384. doi: 10.1002/j.1460-2075.1995.tb07343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Finkelstein R., Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature. 1990 Aug 2;346(6283):485–488. doi: 10.1038/346485a0. [DOI] [PubMed] [Google Scholar]
  18. Ghiglione C., Perrimon N., Perkins L. A. Quantitative variations in the level of MAPK activity control patterning of the embryonic termini in Drosophila. Dev Biol. 1999 Jan 1;205(1):181–193. doi: 10.1006/dbio.1998.9102. [DOI] [PubMed] [Google Scholar]
  19. Greenwood S., Struhl G. Different levels of Ras activity can specify distinct transcriptional and morphological consequences in early Drosophila embryos. Development. 1997 Dec;124(23):4879–4886. doi: 10.1242/dev.124.23.4879. [DOI] [PubMed] [Google Scholar]
  20. Greenwood S., Struhl G. Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development. 1999 Dec;126(24):5795–5808. doi: 10.1242/dev.126.24.5795. [DOI] [PubMed] [Google Scholar]
  21. Han M., Golden A., Han Y., Sternberg P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature. 1993 May 13;363(6425):133–140. doi: 10.1038/363133a0. [DOI] [PubMed] [Google Scholar]
  22. Heemskerk J., DiNardo S. Drosophila hedgehog acts as a morphogen in cellular patterning. Cell. 1994 Feb 11;76(3):449–460. doi: 10.1016/0092-8674(94)90110-4. [DOI] [PubMed] [Google Scholar]
  23. Herbst R., Carroll P. M., Allard J. D., Schilling J., Raabe T., Simon M. A. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell. 1996 Jun 14;85(6):899–909. doi: 10.1016/s0092-8674(00)81273-8. [DOI] [PubMed] [Google Scholar]
  24. Hou X. S., Chou T. B., Melnick M. B., Perrimon N. The torso receptor tyrosine kinase can activate Raf in a Ras-independent pathway. Cell. 1995 Apr 7;81(1):63–71. doi: 10.1016/0092-8674(95)90371-2. [DOI] [PubMed] [Google Scholar]
  25. Häfner S., Adler H. S., Mischak H., Janosch P., Heidecker G., Wolfman A., Pippig S., Lohse M., Ueffing M., Kolch W. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol. 1994 Oct;14(10):6696–6703. doi: 10.1128/mcb.14.10.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kockel L., Vorbrüggen G., Jäckle H., Mlodzik M., Bohmann D. Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev. 1997 May 1;11(9):1140–1147. doi: 10.1101/gad.11.9.1140. [DOI] [PubMed] [Google Scholar]
  27. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000 Oct 15;351(Pt 2):289–305. [PMC free article] [PubMed] [Google Scholar]
  28. Kovacina K. S., Yonezawa K., Brautigan D. L., Tonks N. K., Rapp U. R., Roth R. A. Insulin activates the kinase activity of the Raf-1 proto-oncogene by increasing its serine phosphorylation. J Biol Chem. 1990 Jul 25;265(21):12115–12118. [PubMed] [Google Scholar]
  29. Lu X., Perkins L. A., Perrimon N. The torso pathway in Drosophila: a model system to study receptor tyrosine kinase signal transduction. Dev Suppl. 1993:47–56. [PubMed] [Google Scholar]
  30. Luo Z., Tzivion G., Belshaw P. J., Vavvas D., Marshall M., Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 1996 Sep 12;383(6596):181–185. doi: 10.1038/383181a0. [DOI] [PubMed] [Google Scholar]
  31. MacNicol A. M., Muslin A. J., Howard E. L., Kikuchi A., MacNicol M. C., Williams L. T. Regulation of Raf-1-dependent signaling during early Xenopus development. Mol Cell Biol. 1995 Dec;15(12):6686–6693. doi: 10.1128/mcb.15.12.6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MacNicol A. M., Muslin A. J., Williams L. T. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell. 1993 May 7;73(3):571–583. doi: 10.1016/0092-8674(93)90143-e. [DOI] [PubMed] [Google Scholar]
  33. Melnick M. B., Perkins L. A., Lee M., Ambrosio L., Perrimon N. Developmental and molecular characterization of mutations in the Drosophila-raf serine/threonine protein kinase. Development. 1993 May;118(1):127–138. doi: 10.1242/dev.118.1.127. [DOI] [PubMed] [Google Scholar]
  34. Michaud N. R., Fabian J. R., Mathes K. D., Morrison D. K. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol. 1995 Jun;15(6):3390–3397. doi: 10.1128/mcb.15.6.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mikula M., Schreiber M., Husak Z., Kucerova L., Rüth J., Wieser R., Zatloukal K., Beug H., Wagner E. F., Baccarini M. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 2001 Apr 17;20(8):1952–1962. doi: 10.1093/emboj/20.8.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morrison D. K., Cutler R. E. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997 Apr;9(2):174–179. doi: 10.1016/s0955-0674(97)80060-9. [DOI] [PubMed] [Google Scholar]
  37. Morrison D. K., Heidecker G., Rapp U. R., Copeland T. D. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993 Aug 15;268(23):17309–17316. [PubMed] [Google Scholar]
  38. Morrison D. 14-3-3: modulators of signaling proteins? Science. 1994 Oct 7;266(5182):56–57. doi: 10.1126/science.7939645. [DOI] [PubMed] [Google Scholar]
  39. Perkins L. A., Johnson M. R., Melnick M. B., Perrimon N. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev Biol. 1996 Nov 25;180(1):63–81. doi: 10.1006/dbio.1996.0285. [DOI] [PubMed] [Google Scholar]
  40. Podos S. D., Ferguson E. L. Morphogen gradients: new insights from DPP. Trends Genet. 1999 Oct;15(10):396–402. doi: 10.1016/s0168-9525(99)01854-5. [DOI] [PubMed] [Google Scholar]
  41. Raabe T., Olivier J. P., Dickson B., Liu X., Gish G. D., Pawson T., Hafen E. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila. EMBO J. 1995 Jun 1;14(11):2509–2518. doi: 10.1002/j.1460-2075.1995.tb07248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rapp U. R., Heidecker G., Huleihel M., Cleveland J. L., Choi W. C., Pawson T., Ihle J. N., Anderson W. B. raf family serine/threonine protein kinases in mitogen signal transduction. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):173–184. doi: 10.1101/sqb.1988.053.01.023. [DOI] [PubMed] [Google Scholar]
  43. Raz E., Shilo B. Z. Dissection of the faint little ball (flb) phenotype: determination of the development of the Drosophila central nervous system by early interactions in the ectoderm. Development. 1992 Jan;114(1):113–123. doi: 10.1242/dev.114.1.113. [DOI] [PubMed] [Google Scholar]
  44. Raz E., Shilo B. Z. Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the EGF receptor homolog. Genes Dev. 1993 Oct;7(10):1937–1948. doi: 10.1101/gad.7.10.1937. [DOI] [PubMed] [Google Scholar]
  45. Rommel C., Clarke B. A., Zimmermann S., Nuñez L., Rossman R., Reid K., Moelling K., Yancopoulos G. D., Glass D. J. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 1999 Nov 26;286(5445):1738–1741. doi: 10.1126/science.286.5445.1738. [DOI] [PubMed] [Google Scholar]
  46. Rommel C., Radziwill G., Moelling K., Hafen E. Negative regulation of Raf activity by binding of 14-3-3 to the amino terminus of Raf in vivo. Mech Dev. 1997 Jun;64(1-2):95–104. doi: 10.1016/s0925-4773(97)00052-x. [DOI] [PubMed] [Google Scholar]
  47. Scholz H., Sadlowski E., Klaes A., Klämbt C. Control of midline glia development in the embryonic Drosophila CNS. Mech Dev. 1997 Feb;62(1):79–91. doi: 10.1016/s0925-4773(96)00652-1. [DOI] [PubMed] [Google Scholar]
  48. Skeath J. B. The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal-ventral axis of the Drosophila embryo. Development. 1998 Sep;125(17):3301–3312. doi: 10.1242/dev.125.17.3301. [DOI] [PubMed] [Google Scholar]
  49. Sprenger F., Trosclair M. M., Morrison D. K. Biochemical analysis of torso and D-raf during Drosophila embryogenesis: implications for terminal signal transduction. Mol Cell Biol. 1993 Feb;13(2):1163–1172. doi: 10.1128/mcb.13.2.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sternberg P. W., Alberola-Ila J. Conspiracy theory: RAS and RAF do not act alone. Cell. 1998 Nov 13;95(4):447–450. doi: 10.1016/s0092-8674(00)81612-8. [DOI] [PubMed] [Google Scholar]
  51. Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
  52. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  53. Therrien M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., Rubin G. M. KSR, a novel protein kinase required for RAS signal transduction. Cell. 1995 Dec 15;83(6):879–888. doi: 10.1016/0092-8674(95)90204-x. [DOI] [PubMed] [Google Scholar]
  54. Therrien M., Michaud N. R., Rubin G. M., Morrison D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 1996 Nov 1;10(21):2684–2695. doi: 10.1101/gad.10.21.2684. [DOI] [PubMed] [Google Scholar]
  55. Therrien M., Wong A. M., Kwan E., Rubin G. M. Functional analysis of CNK in RAS signaling. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13259–13263. doi: 10.1073/pnas.96.23.13259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Therrien M., Wong A. M., Rubin G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell. 1998 Oct 30;95(3):343–353. doi: 10.1016/s0092-8674(00)81766-3. [DOI] [PubMed] [Google Scholar]
  57. Valverde A. M., Teruel T., Lorenzo M., Benito M. Involvement of Raf-1 kinase and protein kinase C zeta in insulin-like growth factor I-induced brown adipocyte mitogenic signaling cascades: inhibition by cyclic adenosine 3',5'-monophosphate. Endocrinology. 1996 Sep;137(9):3832–3841. doi: 10.1210/endo.137.9.8756554. [DOI] [PubMed] [Google Scholar]
  58. Wassarman D. A., Solomon N. M., Chang H. C., Karim F. D., Therrien M., Rubin G. M. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev. 1996 Feb 1;10(3):272–278. doi: 10.1101/gad.10.3.272. [DOI] [PubMed] [Google Scholar]
  59. Wojnowski L., Zimmer A. M., Beck T. W., Hahn H., Bernal R., Rapp U. R., Zimmer A. Endothelial apoptosis in Braf-deficient mice. Nat Genet. 1997 Jul;16(3):293–297. doi: 10.1038/ng0797-293. [DOI] [PubMed] [Google Scholar]
  60. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  61. Xu R. H., Dong Z., Maeno M., Kim J., Suzuki A., Ueno N., Sredni D., Colburn N. H., Kung H. F. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):834–838. doi: 10.1073/pnas.93.2.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yagi Y., Suzuki T., Hayashi S. Interaction between Drosophila EGF receptor and vnd determines three dorsoventral domains of the neuroectoderm. Development. 1998 Sep;125(18):3625–3633. doi: 10.1242/dev.125.18.3625. [DOI] [PubMed] [Google Scholar]
  63. Yang L., Baker N. E. Role of the EGFR/Ras/Raf pathway in specification of photoreceptor cells in the Drosophila retina. Development. 2001 Apr;128(7):1183–1191. doi: 10.1242/dev.128.7.1183. [DOI] [PubMed] [Google Scholar]
  64. Zimmermann S., Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999 Nov 26;286(5445):1741–1744. doi: 10.1126/science.286.5445.1741. [DOI] [PubMed] [Google Scholar]
  65. von Ohlen T., Doe C. Q. Convergence of dorsal, dpp, and egfr signaling pathways subdivides the drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol. 2000 Aug 15;224(2):362–372. doi: 10.1006/dbio.2000.9789. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES