Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1845–1859. doi: 10.1093/genetics/159.4.1845

Heterosis, marker mutational processes and population inbreeding history.

A Tsitrone 1, F Rousset 1, P David 1
PMCID: PMC1461896  PMID: 11779819

Abstract

Genotype-fitness correlations (GFC) have previously been studied using allozyme markers and have often focused on short-term processes such as recent inbreeding. Thus, models of GFC usually neglect marker mutation and only use heterozygosity as a genotypic index. Recently, GFC have also been reported (i) with DNA markers such as microsatellites, characterized by high mutation rates and specific mutational processes and (ii) using new individual genotypic indices assumed to be more precise than heterozygosity. The aim of this article is to evaluate the theoretical impact of marker mutation on GFC. We model GFC due to short-term processes generated by the current breeding system (partial selfing) and to long-term processes generated by past population history (hybridization). Various mutation rates and mutation models corresponding to different kinds of molecular markers are considered. Heterozygosity is compared to other genotypic indices designed for specific marker types. Highly mutable markers (such as microsatellites) are particularly suitable for the detection of GFC that evolve in relation to short-term processes, whereas GFC due to long-term processes are best observed with intermediate mutation rates. Irrespective of the marker type and population scenario, heterozygosity usually provides higher correlations than other genotypic indices under most biologically plausible conditions.

Full Text

The Full Text of this article is available as a PDF (172.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bierne N., Launey S., Naciri-Graven Y., Bonhomme F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics. 1998 Apr;148(4):1893–1906. doi: 10.1093/genetics/148.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bierne N., Tsitrone A., David P. An inbreeding model of associative overdominance during a population bottleneck. Genetics. 2000 Aug;155(4):1981–1990. doi: 10.1093/genetics/155.4.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
  4. Cockerham C. C., Weir B. S. Correlations, descent measures: drift with migration and mutation. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8512–8514. doi: 10.1073/pnas.84.23.8512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coltman D. W., Bowen W. D., Wright J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc Biol Sci. 1998 May 7;265(1398):803–809. doi: 10.1098/rspb.1998.0363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulson T. N., Pemberton J. M., Albon S. D., Beaumont M., Marshall T. C., Slate J., Guinness F. E., Clutton-Brock T. H. Microsatellites reveal heterosis in red deer. Proc Biol Sci. 1998 Mar 22;265(1395):489–495. doi: 10.1098/rspb.1998.0321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. David P. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity (Edinb) 1998 May;80(Pt 5):531–537. doi: 10.1046/j.1365-2540.1998.00393.x. [DOI] [PubMed] [Google Scholar]
  8. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hedrick P., Fredrickson R., Ellegren H. Evaluation of d2, a microsatellite measure of inbreeding and outbreeding, in wolves with a known pedigree. Evolution. 2001 Jun;55(6):1256–1260. doi: 10.1111/j.0014-3820.2001.tb00646.x. [DOI] [PubMed] [Google Scholar]
  10. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuhner M. K., Beerli P., Yamato J., Felsenstein J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics. 2000 Sep;156(1):439–447. doi: 10.1093/genetics/156.1.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leary R. F., Allendorf F. W., Knudsen K. L. Developmental stability and enzyme heterozygosity in rainbow trout. Nature. 1983 Jan 6;301(5895):71–72. doi: 10.1038/301071a0. [DOI] [PubMed] [Google Scholar]
  13. Morton N. E., Crow J. F., Muller H. J. AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. Proc Natl Acad Sci U S A. 1956 Nov;42(11):855–863. doi: 10.1073/pnas.42.11.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  15. Ohta T., Kimura M. Development of associative overdominance through linkage disequilibrium in finite populations. Genet Res. 1970 Oct 2;16(2):165–177. doi: 10.1017/s0016672300002391. [DOI] [PubMed] [Google Scholar]
  16. Ota T., Cockerham C. C. Detrimental genes with partial selfing and effects on a neutral locus. Genet Res. 1974 Apr;23(2):191–200. doi: 10.1017/s0016672300014816. [DOI] [PubMed] [Google Scholar]
  17. Pamilo P., Pálsson S. Associative overdominance, heterozygosity and fitness. Heredity (Edinb) 1998 Oct;81(Pt 4):381–389. doi: 10.1046/j.1365-2540.1998.00395.x. [DOI] [PubMed] [Google Scholar]
  18. Pritchard J. K., Feldman M. W. Statistics for microsatellite variation based on coalescence. Theor Popul Biol. 1996 Dec;50(3):325–344. doi: 10.1006/tpbi.1996.0034. [DOI] [PubMed] [Google Scholar]
  19. Rousset F. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics. 1996 Apr;142(4):1357–1362. doi: 10.1093/genetics/142.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slate J., Kruuk L. E., Marshall T. C., Pemberton J. M., Clutton-Brock T. H. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc Biol Sci. 2000 Aug 22;267(1453):1657–1662. doi: 10.1098/rspb.2000.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Whitlock M. C., Ingvarsson P. K., Hatfield T. Local drift load and the heterosis of interconnected populations. Heredity (Edinb) 2000 Apr;84(Pt 4):452–457. doi: 10.1046/j.1365-2540.2000.00693.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES