Skip to main content
Genetics logoLink to Genetics
. 2001 Dec;159(4):1751–1763. doi: 10.1093/genetics/159.4.1751

Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana.

J McElver 1, I Tzafrir 1, G Aux 1, R Rogers 1, C Ashby 1, K Smith 1, C Thomas 1, A Schetter 1, Q Zhou 1, M A Cushman 1, J Tossberg 1, T Nickle 1, J Z Levin 1, M Law 1, D Meinke 1, D Patton 1
PMCID: PMC1461914  PMID: 11779812

Abstract

The purpose of this project was to identify large numbers of Arabidopsis genes with essential functions during seed development. More than 120,000 T-DNA insertion lines were generated following Agrobacterium-mediated transformation. Transgenic plants were screened for defective seeds and putative mutants were subjected to detailed analysis in subsequent generations. Plasmid rescue and TAIL-PCR were used to recover plant sequences flanking insertion sites in tagged mutants. More than 4200 mutants with a wide range of seed phenotypes were identified. Over 1700 of these mutants were analyzed in detail. The 350 tagged embryo-defective (emb) mutants identified to date represent a significant advance toward saturation mutagenesis of EMB genes in Arabidopsis. Plant sequences adjacent to T-DNA borders in mutants with confirmed insertion sites were used to map genome locations and establish tentative identities for 167 EMB genes with diverse biological functions. The frequency of duplicate mutant alleles recovered is consistent with a relatively small number of essential (EMB) genes with nonredundant functions during seed development. Other functions critical to seed development in Arabidopsis may be protected from deleterious mutations by extensive genome duplications.

Full Text

The Full Text of this article is available as a PDF (160.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aida M., Ishida T., Fukaki H., Fujisawa H., Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997 Jun;9(6):841–857. doi: 10.1105/tpc.9.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albert S., Després B., Guilleminot J., Bechtold N., Pelletier G., Delseny M., Devic M. The EMB 506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J. 1999 Jan;17(2):169–179. doi: 10.1046/j.1365-313x.1999.00361.x. [DOI] [PubMed] [Google Scholar]
  3. Altmann T., Felix G., Jessop A., Kauschmann A., Uwer U., Peña-Cortés H., Willmitzer L. Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. Mol Gen Genet. 1995 Jun 10;247(5):646–652. doi: 10.1007/BF00290357. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Apuya N. R., Yadegari R., Fischer R. L., Harada J. J., Zimmerman J. L., Goldberg R. B. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol. 2001 Jun;126(2):717–730. doi: 10.1104/pp.126.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
  7. Arioli T., Peng L., Betzner A. S., Burn J., Wittke W., Herth W., Camilleri C., Höfte H., Plazinski J., Birch R. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 1998 Jan 30;279(5351):717–720. doi: 10.1126/science.279.5351.717. [DOI] [PubMed] [Google Scholar]
  8. Assaad F. F., Huet Y., Mayer U., Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol. 2001 Feb 5;152(3):531–543. doi: 10.1083/jcb.152.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. The Pfam protein families database. Nucleic Acids Res. 2000 Jan 1;28(1):263–266. doi: 10.1093/nar/28.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bechtold N., Pelletier G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol. 1998;82:259–266. doi: 10.1385/0-89603-391-0:259. [DOI] [PubMed] [Google Scholar]
  11. Boisson M., Gomord V., Audran C., Berger N., Dubreucq B., Granier F., Lerouge P., Faye L., Caboche M., Lepiniec L. Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J. 2001 Mar 1;20(5):1010–1019. doi: 10.1093/emboj/20.5.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Budziszewski G. J., Lewis S. P., Glover L. W., Reineke J., Jones G., Ziemnik L. S., Lonowski J., Nyfeler B., Aux G., Zhou Q. Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics. 2001 Dec;159(4):1765–1778. doi: 10.1093/genetics/159.4.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Castle L. A., Errampalli D., Atherton T. L., Franzmann L. H., Yoon E. S., Meinke D. W. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet. 1993 Dec;241(5-6):504–514. doi: 10.1007/BF00279892. [DOI] [PubMed] [Google Scholar]
  14. Castle L. A., Meinke D. W. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell. 1994 Jan;6(1):25–41. doi: 10.1105/tpc.6.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chuang C. F., Meyerowitz E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4985–4990. doi: 10.1073/pnas.060034297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  17. Conklin P. L., Norris S. R., Wheeler G. L., Williams E. H., Smirnoff N., Last R. L. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4198–4203. doi: 10.1073/pnas.96.7.4198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
  19. Errampalli D., Patton D., Castle L., Mickelson L., Hansen K., Schnall J., Feldmann K., Meinke D. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis. Plant Cell. 1991 Feb;3(2):149–157. doi: 10.1105/tpc.3.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Eyal Y., Curie C., McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell. 1995 Mar;7(3):373–384. doi: 10.1105/tpc.7.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  22. Grossniklaus U., Vielle-Calzada J. P., Hoeppner M. A., Gagliano W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science. 1998 Apr 17;280(5362):446–450. doi: 10.1126/science.280.5362.446. [DOI] [PubMed] [Google Scholar]
  23. Gönczy P., Echeverri C., Oegema K., Coulson A., Jones S. J., Copley R. R., Duperon J., Oegema J., Brehm M., Cassin E. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000 Nov 16;408(6810):331–336. doi: 10.1038/35042526. [DOI] [PubMed] [Google Scholar]
  24. Hardtke C. S., Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 1998 Mar 2;17(5):1405–1411. doi: 10.1093/emboj/17.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hayashi H., Czaja I., Lubenow H., Schell J., Walden R. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science. 1992 Nov 20;258(5086):1350–1353. doi: 10.1126/science.1455228. [DOI] [PubMed] [Google Scholar]
  26. Jang J. C., Fujioka S., Tasaka M., Seto H., Takatsuto S., Ishii A., Aida M., Yoshida S., Sheen J. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 2000 Jun 15;14(12):1485–1497. [PMC free article] [PubMed] [Google Scholar]
  27. Jürgens G., Torres Ruiz R. A., Berleth T. Embryonic pattern formation in flowering plants. Annu Rev Genet. 1994;28:351–371. doi: 10.1146/annurev.ge.28.120194.002031. [DOI] [PubMed] [Google Scholar]
  28. Krysan P. J., Young J. C., Sussman M. R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell. 1999 Dec;11(12):2283–2290. doi: 10.1105/tpc.11.12.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Laux T., Jurgens G. Embryogenesis: A New Start in Life. Plant Cell. 1997 Jul;9(7):989–1000. doi: 10.1105/tpc.9.7.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu C. M., Meinke D. W. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J. 1998 Oct;16(1):21–31. doi: 10.1046/j.1365-313x.1998.00268.x. [DOI] [PubMed] [Google Scholar]
  31. Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
  32. Liu Y. G., Whittier R. F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995 Feb 10;25(3):674–681. doi: 10.1016/0888-7543(95)80010-j. [DOI] [PubMed] [Google Scholar]
  33. Lotan T., Ohto M., Yee K. M., West M. A., Lo R., Kwong R. W., Yamagishi K., Fischer R. L., Goldberg R. B., Harada J. J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998 Jun 26;93(7):1195–1205. doi: 10.1016/s0092-8674(00)81463-4. [DOI] [PubMed] [Google Scholar]
  34. Luerssen H., Kirik V., Herrmann P., Miséra S. FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998 Sep;15(6):755–764. doi: 10.1046/j.1365-313x.1998.00259.x. [DOI] [PubMed] [Google Scholar]
  35. Lukowitz W., Gillmor C. S., Scheible W. R. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 2000 Jul;123(3):795–805. doi: 10.1104/pp.123.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  37. Lukowitz W., Nickle T. C., Meinke D. W., Last R. L., Conklin P. L., Somerville C. R. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2262–2267. doi: 10.1073/pnas.051625798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McElver J., Patton D., Rumbaugh M., Liu C., Yang L. J., Meinke D. The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins. Plant Cell. 2000 Aug;12(8):1379–1392. doi: 10.1105/tpc.12.8.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Meinke D. W., Sussex I. M. Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol. 1979 Sep;72(1):50–61. doi: 10.1016/0012-1606(79)90097-6. [DOI] [PubMed] [Google Scholar]
  40. Mette M. F., Aufsatz W., van der Winden J., Matzke M. A., Matzke A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000 Oct 2;19(19):5194–5201. doi: 10.1093/emboj/19.19.5194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Meurer J., Meierhoff K., Westhoff P. Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and northern hybridisation. Planta. 1996;198(3):385–396. doi: 10.1007/BF00620055. [DOI] [PubMed] [Google Scholar]
  42. Norris S. R., Barrette T. R., DellaPenna D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell. 1995 Dec;7(12):2139–2149. doi: 10.1105/tpc.7.12.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Osborne B. I., Wirtz U., Baker B. A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J. 1995 Apr;7(4):687–701. doi: 10.1046/j.1365-313x.1995.7040687.x. [DOI] [PubMed] [Google Scholar]
  44. Parinov S., Sevugan M., Ye D., Yang W. C., Kumaran M., Sundaresan V. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell. 1999 Dec;11(12):2263–2270. doi: 10.1105/tpc.11.12.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Patton D. A., Volrath S., Ward E. R. Complementation of an Arabidopsis thaliana biotin auxotroph with an Escherichia coli biotin biosynthetic gene. Mol Gen Genet. 1996 Jun 12;251(3):261–266. doi: 10.1007/BF02172516. [DOI] [PubMed] [Google Scholar]
  46. Patton DA, Schetter AL, Franzmann LH, Nelson K, Ward ER, Meinke DW. An embryo-defective mutant of arabidopsis disrupted in the final step of biotin synthesis . Plant Physiol. 1998 Mar;116(3):935–946. doi: 10.1104/pp.116.3.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Preuss D., Rhee S. Y., Davis R. W. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science. 1994 Jun 3;264(5164):1458–1460. doi: 10.1126/science.8197459. [DOI] [PubMed] [Google Scholar]
  48. Schrick K., Mayer U., Horrichs A., Kuhnt C., Bellini C., Dangl J., Schmidt J., Jürgens G. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 2000 Jun 15;14(12):1471–1484. [PMC free article] [PubMed] [Google Scholar]
  49. Shellhammer J., Meinke D. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin. Plant Physiol. 1990 Jul;93(3):1162–1167. doi: 10.1104/pp.93.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Somerville C., Dangl Genomics. Plant biology in 2010. Science. 2000 Dec 15;290(5499):2077–2078. doi: 10.1126/science.290.5499.2077. [DOI] [PubMed] [Google Scholar]
  51. Speulman E., Metz P. L., van Arkel G., te Lintel Hekkert B., Stiekema W. J., Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell. 1999 Oct;11(10):1853–1866. doi: 10.1105/tpc.11.10.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 1995 Jul 15;9(14):1797–1810. doi: 10.1101/gad.9.14.1797. [DOI] [PubMed] [Google Scholar]
  53. Tissier A. F., Marillonnet S., Klimyuk V., Patel K., Torres M. A., Murphy G., Jones J. D. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell. 1999 Oct;11(10):1841–1852. doi: 10.1105/tpc.11.10.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tohe A., Oguchi T. An improved integration replacement/disruption method for mutagenesis of yeast essential genes. Genes Genet Syst. 2000 Feb;75(1):33–39. doi: 10.1266/ggs.75.33. [DOI] [PubMed] [Google Scholar]
  55. Topping J. F., Agyeman F., Henricot B., Lindsey K. Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J. 1994 Jun;5(6):895–903. doi: 10.1046/j.1365-313x.1994.5060895.x. [DOI] [PubMed] [Google Scholar]
  56. Tsugeki R., Kochieva E. Z., Fedoroff N. V. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 1996 Sep;10(3):479–489. doi: 10.1046/j.1365-313x.1996.10030479.x. [DOI] [PubMed] [Google Scholar]
  57. Uwer U., Willmitzer L., Altmann T. Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell. 1998 Aug;10(8):1277–1294. doi: 10.1105/tpc.10.8.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vernoux T., Wilson R. C., Seeley K. A., Reichheld J. P., Muroy S., Brown S., Maughan S. C., Cobbett C. S., Van Montagu M., Inzé D. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell. 2000 Jan;12(1):97–110. doi: 10.1105/tpc.12.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Weigel D., Ahn J. H., Blázquez M. A., Borevitz J. O., Christensen S. K., Fankhauser C., Ferrándiz C., Kardailsky I., Malancharuvil E. J., Neff M. M. Activation tagging in Arabidopsis. Plant Physiol. 2000 Apr;122(4):1003–1013. doi: 10.1104/pp.122.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]
  61. Wisman E., Cardon G. H., Fransz P., Saedler H. The behaviour of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Mol Biol. 1998 Aug;37(6):989–999. doi: 10.1023/a:1006082009151. [DOI] [PubMed] [Google Scholar]
  62. Yadegari R., Paiva GRd., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. Plant Cell. 1994 Dec;6(12):1713–1729. doi: 10.1105/tpc.6.12.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zhang J. Z., Somerville C. R. Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7349–7355. doi: 10.1073/pnas.94.14.7349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES