Skip to main content
Genetics logoLink to Genetics
. 2002 Jan;160(1):313–322. doi: 10.1093/genetics/160.1.313

Diverse variation of reproductive barriers in three intraspecific rice crosses.

Yoshiaki Harushima 1, Masahiro Nakagahra 1, Masahiro Yano 1, Takuji Sasaki 1, Nori Kurata 1
PMCID: PMC1461933  PMID: 11805066

Abstract

Reproductive barriers are thought to play an important role in the processes of speciation and differentiation. Asian rice cultivars, Oryza sativa, can be classified into two main types, Japonica and Indica, on the basis of several characteristics. The fertility of Japonica-Indica hybrids differs from one cross to another. Many genes involved in reproductive barriers (hybrid sterility, hybrid weakness, and gametophytic competition genes) have been reported in different Japonica-Indica crosses. To clarify the state of Japonica-Indica differentiation, all reproductive barriers causing deviation from Mendelian segregation ratios in F(2) populations were mapped and compared among three different Japonica-Indica crosses: Nipponbare/Kasalath (NK), Fl1084/Dao Ren Qiao (FD), and Fl1007/Kinandang puti (FK). Mapping of reproductive barriers was performed by regression analysis of allele frequencies of DNA markers covering the entire genome. Allele frequencies were explained by 33 reproductive barriers (15 gametophytic and 18 zygotic) in NK, 32 barriers (15 gametophytic and 17 zygotic) in FD, and 37 barriers (19 gametophytic and 18 zygotic) in FK. The number of reproductive barriers in the three crosses was similar; however, most of the barriers were mapped at different loci. Therefore, these reproductive barriers formed after Japonica-Indica differentiation. Considering the high genetic similarity within Japonica and Indica cultivars, the differences in the reproductive barriers of each cross were unexpectedly numerous. The reproductive barriers of Japonica-Indica hybrids likely evolved more rapidly than other genetic elements. One possible force responsible for such rapid evolution of the barriers may have been the domestication of rice.

Full Text

The Full Text of this article is available as a PDF (465.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonio B. A., Inoue T., Kajiya H., Nagamura Y., Kurata N., Minobe Y., Yano M., Nakagahra M., Sasaki T. Comparison off genetic distance and order off DNA markers in five populations of rice. Genome. 1996 Oct;39(5):946–956. doi: 10.1139/g96-119. [DOI] [PubMed] [Google Scholar]
  2. Ferris P. J., Pavlovic C., Fabry S., Goodenough U. W. Rapid evolution of sex-related genes in Chlamydomonas. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8634–8639. doi: 10.1073/pnas.94.16.8634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gao B., Klein L. E., Britten R. J., Davidson E. H. Sequence of mRNA coding for bindin, a species-specific sea urchin sperm protein required for fertilization. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8634–8638. doi: 10.1073/pnas.83.22.8634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gavrilets S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature. 2000 Feb 24;403(6772):886–889. doi: 10.1038/35002564. [DOI] [PubMed] [Google Scholar]
  5. Harushima Y., Nakagahra M., Yano M., Sasaki T., Kurata N. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics. 2001 Oct;159(2):883–892. doi: 10.1093/genetics/159.2.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herrmann B. G., Koschorz B., Wertz K., McLaughlin K. J., Kispert A. A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature. 1999 Nov 11;402(6758):141–146. doi: 10.1038/45970. [DOI] [PubMed] [Google Scholar]
  8. Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J., Antonio B. A., Shomura A., Shimizu T., Lin S. Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet. 1994 Dec;8(4):365–372. doi: 10.1038/ng1294-365. [DOI] [PubMed] [Google Scholar]
  9. Lee Y. H., Ota T., Vacquier V. D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol Biol Evol. 1995 Mar;12(2):231–238. doi: 10.1093/oxfordjournals.molbev.a040200. [DOI] [PubMed] [Google Scholar]
  10. Merrill C., Bayraktaroglu L., Kusano A., Ganetzky B. Truncated RanGAP encoded by the Segregation Distorter locus of Drosophila. Science. 1999 Mar 12;283(5408):1742–1745. doi: 10.1126/science.283.5408.1742. [DOI] [PubMed] [Google Scholar]
  11. Metz E. C., Palumbi S. R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol. 1996 Feb;13(2):397–406. doi: 10.1093/oxfordjournals.molbev.a025598. [DOI] [PubMed] [Google Scholar]
  12. Palopoli M. F., Wu C. I. Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics. 1996 Aug;143(4):1675–1688. doi: 10.1093/genetics/143.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Redoña E. D., Mackill D. J. Molecular mapping of quantitative trait loci in japonica rice. Genome. 1996 Apr;39(2):395–403. doi: 10.1139/g96-050. [DOI] [PubMed] [Google Scholar]
  14. Swanson W. J., Vacquier V. D. The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6724–6729. doi: 10.1073/pnas.94.13.6724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ting C. T., Tsaur S. C., Wu M. L., Wu C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science. 1998 Nov 20;282(5393):1501–1504. doi: 10.1126/science.282.5393.1501. [DOI] [PubMed] [Google Scholar]
  16. Vacquier V. D., Carner K. R., Stout C. D. Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5792–5796. doi: 10.1073/pnas.87.15.5792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vacquier V. D. Evolution of gamete recognition proteins. Science. 1998 Sep 25;281(5385):1995–1998. doi: 10.1126/science.281.5385.1995. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES