Skip to main content
Genetics logoLink to Genetics
. 2002 Jan;160(1):149–158. doi: 10.1093/genetics/160.1.149

Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2.

Michael A Collett 1, Norm Garceau 1, Jay C Dunlap 1, Jennifer J Loros 1
PMCID: PMC1461937  PMID: 11805052

Abstract

Visible light is thought to reset the Neurospora circadian clock by acting through heterodimers of the WHITE COLLAR-1 and WHITE COLLAR-2 proteins to induce transcription of the frequency gene. To characterize this photic entrainment we examined frq expression in constant light, under which condition the mRNA and protein of this clock gene were strongly induced. In continuous illumination FRQ accumulated in a highly phosphorylated state similar to that seen at subjective dusk, the time at which a step from constant light to darkness sets the clock. Examination of frq expression in several wc-2 mutant alleles surprisingly revealed differential regulation when frq expression was compared between constant light, following a light pulse, and darkness (clock-driven expression). Construction of a wc-2 null strain then demonstrated that WC-2 is absolutely required for both light and clock-driven frq expression, in contrast to previous expectations based on presumptive nulls containing altered Zn-finger function. Additionally, we found that frq light signal transduction differs from that of other light-regulated genes. Thus clock and light-driven frq expression is differentially regulated by, but dependent on, WC-2.

Full Text

The Full Text of this article is available as a PDF (331.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allada R., White N. E., So W. V., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998 May 29;93(5):791–804. doi: 10.1016/s0092-8674(00)81440-3. [DOI] [PubMed] [Google Scholar]
  2. Arpaia G., Carattoli A., Macino G. Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev Biol. 1995 Aug;170(2):626–635. doi: 10.1006/dbio.1995.1242. [DOI] [PubMed] [Google Scholar]
  3. Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. Light induction of the clock-controlled gene ccg-1 is not transduced through the circadian clock in Neurospora crassa. Mol Gen Genet. 1995 Apr 20;247(2):157–163. doi: 10.1007/BF00705645. [DOI] [PubMed] [Google Scholar]
  4. Arpaia G., Loros J. J., Dunlap J. C., Morelli G., Macino G. The interplay of light and the circadian clock. Independent dual regulation of clock-controlled gene ccg-2(eas). Plant Physiol. 1993 Aug;102(4):1299–1305. doi: 10.1104/pp.102.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballario P., Macino G. White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 1997 Nov;5(11):458–462. doi: 10.1016/S0966-842X(97)01144-X. [DOI] [PubMed] [Google Scholar]
  6. Ballario P., Vittorioso P., Magrelli A., Talora C., Cabibbo A., Macino G. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 1996 Apr 1;15(7):1650–1657. [PMC free article] [PubMed] [Google Scholar]
  7. Bell-Pedersen D., Dunlap J. C., Loros J. J. Distinct cis-acting elements mediate clock, light, and developmental regulation of the Neurospora crassa eas (ccg-2) gene. Mol Cell Biol. 1996 Feb;16(2):513–521. doi: 10.1128/mcb.16.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bell-Pedersen D., Shinohara M. L., Loros J. J., Dunlap J. C. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13096–13101. doi: 10.1073/pnas.93.23.13096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Briggs W. R., Beck C. F., Cashmore A. R., Christie J. M., Hughes J., Jarillo J. A., Kagawa T., Kanegae H., Liscum E., Nagatani A. The phototropin family of photoreceptors. Plant Cell. 2001 May;13(5):993–997. doi: 10.1105/tpc.13.5.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ceriani M. F., Darlington T. K., Staknis D., Más P., Petti A. A., Weitz C. J., Kay S. A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999 Jul 23;285(5427):553–556. doi: 10.1126/science.285.5427.553. [DOI] [PubMed] [Google Scholar]
  11. Cermakian N., Sassone-Corsi P. Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol. 2000 Oct;1(1):59–67. doi: 10.1038/35036078. [DOI] [PubMed] [Google Scholar]
  12. Cheng P., Yang Y., Heintzen C., Liu Y. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 2001 Jan 15;20(1-2):101–108. doi: 10.1093/emboj/20.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collett M. A., Dunlap J. C., Loros J. J. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol Cell Biol. 2001 Apr;21(8):2619–2628. doi: 10.1128/MCB.21.8.2619-2628.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
  15. Crosthwaite S. K., Loros J. J., Dunlap J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell. 1995 Jun 30;81(7):1003–1012. doi: 10.1016/s0092-8674(05)80005-4. [DOI] [PubMed] [Google Scholar]
  16. Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
  17. Degli-Innocenti F., Russo V. E. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984 Aug;159(2):757–761. doi: 10.1128/jb.159.2.757-761.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garceau N. Y., Liu Y., Loros J. J., Dunlap J. C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell. 1997 May 2;89(3):469–476. doi: 10.1016/s0092-8674(00)80227-5. [DOI] [PubMed] [Google Scholar]
  20. Gu Y. Z., Hogenesch J. B., Bradfield C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–561. doi: 10.1146/annurev.pharmtox.40.1.519. [DOI] [PubMed] [Google Scholar]
  21. Harding R. W., Turner R. V. Photoregulation of the Carotenoid Biosynthetic Pathway in Albino and White Collar Mutants of Neurospora crassa. Plant Physiol. 1981 Sep;68(3):745–749. doi: 10.1104/pp.68.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heintzen C., Loros J. J., Dunlap J. C. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell. 2001 Feb 9;104(3):453–464. doi: 10.1016/s0092-8674(01)00232-x. [DOI] [PubMed] [Google Scholar]
  23. Huala E., Oeller P. W., Liscum E., Han I. S., Larsen E., Briggs W. R. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science. 1997 Dec 19;278(5346):2120–2123. doi: 10.1126/science.278.5346.2120. [DOI] [PubMed] [Google Scholar]
  24. Hunter-Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996 Mar 8;84(5):677–685. doi: 10.1016/s0092-8674(00)81046-6. [DOI] [PubMed] [Google Scholar]
  25. Jarillo J. A., Capel J., Tang R. H., Yang H. Q., Alonso J. M., Ecker J. R., Cashmore A. R. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature. 2001 Mar 22;410(6827):487–490. doi: 10.1038/35068589. [DOI] [PubMed] [Google Scholar]
  26. Johnson C. H. Endogenous timekeepers in photosynthetic organisms. Annu Rev Physiol. 2001;63:695–728. doi: 10.1146/annurev.physiol.63.1.695. [DOI] [PubMed] [Google Scholar]
  27. Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
  28. Li C., Schmidhauser T. J. Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol. 1995 May;169(1):90–95. doi: 10.1006/dbio.1995.1129. [DOI] [PubMed] [Google Scholar]
  29. Linden H., Ballario P., Arpaia G., Macino G. Seeing the light: news in Neurospora blue light signal transduction. Adv Genet. 1999;41:35–54. doi: 10.1016/s0065-2660(08)60150-9. [DOI] [PubMed] [Google Scholar]
  30. Linden H., Ballario P., Macino G. Blue light regulation in Neurospora crassa. Fungal Genet Biol. 1997 Dec;22(3):141–150. doi: 10.1006/fgbi.1997.1013. [DOI] [PubMed] [Google Scholar]
  31. Linden H., Macino G. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 1997 Jan 2;16(1):98–109. doi: 10.1093/emboj/16.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Linden H., Rodriguez-Franco M., Macino G. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet. 1997 Mar 26;254(2):111–118. doi: 10.1007/s004380050398. [DOI] [PubMed] [Google Scholar]
  33. Liu Y., Loros J., Dunlap J. C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):234–239. doi: 10.1073/pnas.97.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Myers M. P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996 Mar 22;271(5256):1736–1740. doi: 10.1126/science.271.5256.1736. [DOI] [PubMed] [Google Scholar]
  35. Naidoo N., Song W., Hunter-Ensor M., Sehgal A. A role for the proteasome in the light response of the timeless clock protein. Science. 1999 Sep 10;285(5434):1737–1741. doi: 10.1126/science.285.5434.1737. [DOI] [PubMed] [Google Scholar]
  36. Nelson M. A., Morelli G., Carattoli A., Romano N., Macino G. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol. 1989 Mar;9(3):1271–1276. doi: 10.1128/mcb.9.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Orbach M. J. A cosmid with a HyR marker for fungal library construction and screening. Gene. 1994 Dec 2;150(1):159–162. doi: 10.1016/0378-1119(94)90877-x. [DOI] [PubMed] [Google Scholar]
  38. Pando M. P., Sassone-Corsi P. Molecular clocks. A vivid loop of light. Nature. 2001 Mar 15;410(6826):311–313. doi: 10.1038/35066655. [DOI] [PubMed] [Google Scholar]
  39. Perkins D. D., Radford A., Newmeyer D., Björkman M. Chromosomal loci of Neurospora crassa. Microbiol Rev. 1982 Dec;46(4):426–570. doi: 10.1128/mr.46.4.426-570.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Russo V. E. Blue light induces circadian rhythms in the bd mutant of Neurospora: double mutants bd,wc-1 and bd,wc-2 are blind. J Photochem Photobiol B. 1988 Jul;2(1):59–65. doi: 10.1016/1011-1344(88)85037-1. [DOI] [PubMed] [Google Scholar]
  41. Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998 May 29;93(5):805–814. doi: 10.1016/s0092-8674(00)81441-5. [DOI] [PubMed] [Google Scholar]
  42. Scheper T. O., Klinkenberg D., van Pelt J., Pennartz C. A model of molecular circadian clocks: multiple mechanisms for phase shifting and a requirement for strong nonlinear interactions. J Biol Rhythms. 1999 Jun;14(3):213–220. doi: 10.1177/074873099129000623. [DOI] [PubMed] [Google Scholar]
  43. Schwerdtfeger C., Linden H. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem. 2000 Jan;267(2):414–422. doi: 10.1046/j.1432-1327.2000.01016.x. [DOI] [PubMed] [Google Scholar]
  44. Shearman L. P., Zylka M. J., Reppert S. M., Weaver D. R. Expression of basic helix-loop-helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience. 1999 Mar;89(2):387–397. doi: 10.1016/s0306-4522(98)00325-x. [DOI] [PubMed] [Google Scholar]
  45. Shearman L. P., Zylka M. J., Weaver D. R., Kolakowski L. F., Jr, Reppert S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997 Dec;19(6):1261–1269. doi: 10.1016/s0896-6273(00)80417-1. [DOI] [PubMed] [Google Scholar]
  46. Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei H., Moriya T., Shibata S., Loros J. J., Dunlap J. C. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997 Dec 26;91(7):1043–1053. doi: 10.1016/s0092-8674(00)80494-8. [DOI] [PubMed] [Google Scholar]
  47. Shrode L. B., Lewis Z. A., White L. D., Bell-Pedersen D., Ebbole D. J. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol. 2001 Apr;32(3):169–181. doi: 10.1006/fgbi.2001.1264. [DOI] [PubMed] [Google Scholar]
  48. Somers D. E., Devlin P. F., Kay S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science. 1998 Nov 20;282(5393):1488–1490. doi: 10.1126/science.282.5393.1488. [DOI] [PubMed] [Google Scholar]
  49. Somers D. E., Schultz T. F., Milnamow M., Kay S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell. 2000 Apr 28;101(3):319–329. doi: 10.1016/s0092-8674(00)80841-7. [DOI] [PubMed] [Google Scholar]
  50. Sommer T., Chambers J. A., Eberle J., Lauter F. R., Russo V. E. Fast light-regulated genes of Neurospora crassa. Nucleic Acids Res. 1989 Jul 25;17(14):5713–5723. doi: 10.1093/nar/17.14.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 1999 Sep 15;18(18):4961–4968. doi: 10.1093/emboj/18.18.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Williams J. A., Sehgal A. Molecular components of the circadian system in Drosophila. Annu Rev Physiol. 2001;63:729–755. doi: 10.1146/annurev.physiol.63.1.729. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES