Skip to main content
Genetics logoLink to Genetics
. 2002 Jan;160(1):159–168. doi: 10.1093/genetics/160.1.159

Mutations in sfdA and sfdB suppress multiple developmental mutations in Aspergillus nidulans.

Ellen M Kellner 1, Thomas H Adams 1
PMCID: PMC1461940  PMID: 11805053

Abstract

Conidiophore morphogenesis in Aspergillus nidulans occurs in response to developmental signals that result in the activation of brlA, a well-characterized gene that encodes a transcription factor that is central to asexual development. Loss-of-function mutations in flbD and other fluffy loci have previously been shown to result in delayed development and reduced expression of brlA. flbD message is detectable during both hyphal growth and conidiation, and its gene product is similar to the Myb family of transcription factors. To further understand the regulatory pathway to brlA activation and conidiation, we isolated suppressor mutations that rescued development in strains with a flbD null allele. We describe here two new loci, designated sfdA and sfdB for suppressors of flbD, that bypass the requirement of flbD for development. sfd mutant alleles were found to restore developmental timing and brlA expression to strains with flbD deletions. In addition, sfd mutations suppress the developmental defects in strains harboring loss-of-function mutations in fluG, flbA, flbB, flbC, and flbE. All alleles of sfdA and sfdB that we have isolated are recessive to their wild-type alleles in diploids. Strains with mutant sfd alleles in otherwise developmentally wild-type backgrounds have reduced growth phenotypes and develop conidiophores in submerged cultures.

Full Text

The Full Text of this article is available as a PDF (200.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams T. H., Boylan M. T., Timberlake W. E. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell. 1988 Jul 29;54(3):353–362. doi: 10.1016/0092-8674(88)90198-5. [DOI] [PubMed] [Google Scholar]
  2. Adams T. H., Hide W. A., Yager L. N., Lee B. N. Isolation of a gene required for programmed initiation of development by Aspergillus nidulans. Mol Cell Biol. 1992 Sep;12(9):3827–3833. doi: 10.1128/mcb.12.9.3827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams T. H., Wieser J. K., Yu J. H. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998 Mar;62(1):35–54. doi: 10.1128/mmbr.62.1.35-54.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axelrod D. E., Gealt M., Pastushok M. Gene control of developmental competence in Aspergillus nidulans. Dev Biol. 1973 Sep;34(1):9–15. doi: 10.1016/0012-1606(73)90335-7. [DOI] [PubMed] [Google Scholar]
  5. Axelrod D. E. Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans. J Gen Microbiol. 1972 Nov;73(1):181–184. doi: 10.1099/00221287-73-1-181. [DOI] [PubMed] [Google Scholar]
  6. Boylan M. T., Mirabito P. M., Willett C. E., Zimmerman C. R., Timberlake W. E. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol. 1987 Sep;7(9):3113–3118. doi: 10.1128/mcb.7.9.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Han S., Navarro J., Greve R. A., Adams T. H. Translational repression of brlA expression prevents premature development in Aspergillus. EMBO J. 1993 Jun;12(6):2449–2457. doi: 10.1002/j.1460-2075.1993.tb05899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hicks J. K., Yu J. H., Keller N. P., Adams T. H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 1997 Aug 15;16(16):4916–4923. doi: 10.1093/emboj/16.16.4916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hicks J., Lockington R. A., Strauss J., Dieringer D., Kubicek C. P., Kelly J., Keller N. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol. 2001 Mar;39(6):1482–1493. doi: 10.1046/j.1365-2958.2001.02332.x. [DOI] [PubMed] [Google Scholar]
  10. Jin H., Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol. 1999 Nov;41(5):577–585. doi: 10.1023/a:1006319732410. [DOI] [PubMed] [Google Scholar]
  11. Käfer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1977;19:33–131. doi: 10.1016/s0065-2660(08)60245-x. [DOI] [PubMed] [Google Scholar]
  12. Law D. J., Timberlake W. E. Developmental regulation of laccase levels in Aspergillus nidulans. J Bacteriol. 1980 Nov;144(2):509–517. doi: 10.1128/jb.144.2.509-517.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee B. N., Adams T. H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol. 1994 Oct;14(2):323–334. doi: 10.1111/j.1365-2958.1994.tb01293.x. [DOI] [PubMed] [Google Scholar]
  14. Lee B. N., Adams T. H. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 1994 Mar 15;8(6):641–651. doi: 10.1101/gad.8.6.641. [DOI] [PubMed] [Google Scholar]
  15. Lipsick J. S. One billion years of Myb. Oncogene. 1996 Jul 18;13(2):223–235. [PubMed] [Google Scholar]
  16. Martin C., Paz-Ares J. MYB transcription factors in plants. Trends Genet. 1997 Feb;13(2):67–73. doi: 10.1016/s0168-9525(96)10049-4. [DOI] [PubMed] [Google Scholar]
  17. Miller B. L., Miller K. Y., Timberlake W. E. Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol. 1985 Jul;5(7):1714–1721. doi: 10.1128/mcb.5.7.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mirabito P. M., Adams T. H., Timberlake W. E. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell. 1989 Jun 2;57(5):859–868. doi: 10.1016/0092-8674(89)90800-3. [DOI] [PubMed] [Google Scholar]
  19. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  20. Skromne I., Sánchez O., Aguirre J. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology. 1995 Jan;141(Pt 1):21–28. doi: 10.1099/00221287-141-1-21. [DOI] [PubMed] [Google Scholar]
  21. Wieser J., Adams T. H. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev. 1995 Feb 15;9(4):491–502. doi: 10.1101/gad.9.4.491. [DOI] [PubMed] [Google Scholar]
  22. Wieser J., Lee B. N., Fondon J. w., 3rd, Adams T. H. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet. 1994 Dec;27(1):62–69. doi: 10.1007/BF00326580. [DOI] [PubMed] [Google Scholar]
  23. Yamashiro C. T., Ebbole D. J., Lee B. U., Brown R. E., Bourland C., Madi L., Yanofsky C. Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol. 1996 Nov;16(11):6218–6228. doi: 10.1128/mcb.16.11.6218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yelton M. M., Timberlake W. E., Hondel C. A. A cosmid for selecting genes by complementation in Aspergillus nidulans: Selection of the developmentally regulated yA locus. Proc Natl Acad Sci U S A. 1985 Feb;82(3):834–838. doi: 10.1073/pnas.82.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yu J. H., Rosén S., Adams T. H. Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics. 1999 Jan;151(1):97–105. doi: 10.1093/genetics/151.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yu J. H., Wieser J., Adams T. H. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 1996 Oct 1;15(19):5184–5190. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES