Skip to main content
Genetics logoLink to Genetics
. 2002 Jan;160(1):211–224. doi: 10.1093/genetics/160.1.211

The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression.

Oliver Lung 1, Uyen Tram 1, Casey M Finnerty 1, Marcie A Eipper-Mains 1, John M Kalb 1, Mariana F Wolfner 1
PMCID: PMC1461949  PMID: 11805057

Abstract

Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, approximately 10% enters the circulatory system while approximately 90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating.

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics. 1998 Nov;150(3):1079–1089. doi: 10.1093/genetics/150.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguadé M., Miyashita N., Langley C. H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. doi: 10.1093/genetics/132.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aguadé M. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics. 1999 Jun;152(2):543–551. doi: 10.1093/genetics/152.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aigaki T., Fleischmann I., Chen P. S., Kubli E. Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron. 1991 Oct;7(4):557–563. doi: 10.1016/0896-6273(91)90368-a. [DOI] [PubMed] [Google Scholar]
  5. Alexandrov N. N., Nussinov R., Zimmer R. M. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials. Pac Symp Biocomput. 1996:53–72. [PubMed] [Google Scholar]
  6. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Babin D. R., Peanasky R. J., Goos S. M. The isoinhibitors of chymotrypsin/elastase from Ascaris lumbricoides: the primary structure. Arch Biochem Biophys. 1984 Jul;232(1):143–161. doi: 10.1016/0003-9861(84)90530-7. [DOI] [PubMed] [Google Scholar]
  8. Bania J., Stachowiak D., Polanowski A. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. Eur J Biochem. 1999 Jun;262(3):680–687. doi: 10.1046/j.1432-1327.1999.00406.x. [DOI] [PubMed] [Google Scholar]
  9. Begun D. J., Whitley P., Todd B. L., Waldrip-Dail H. M., Clark A. G. Molecular population genetics of male accessory gland proteins in Drosophila. Genetics. 2000 Dec;156(4):1879–1888. doi: 10.1093/genetics/156.4.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  11. Cechová D., Fritz H. Characterization of the proteinase inhibitors from bull seminal plasma and spermatozoa. Hoppe Seylers Z Physiol Chem. 1976 Mar;357(3):401–408. doi: 10.1515/bchm2.1976.357.1.401. [DOI] [PubMed] [Google Scholar]
  12. Chapman T., Herndon L. A., Heifetz Y., Partridge L., Wolfner M. F. The Acp26Aa seminal fluid protein is a modulator of early egg hatchability in Drosophila melanogaster. Proc Biol Sci. 2001 Aug 22;268(1477):1647–1654. doi: 10.1098/rspb.2001.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995 Jan 19;373(6511):241–244. doi: 10.1038/373241a0. [DOI] [PubMed] [Google Scholar]
  14. Chapman T., Neubaum D. M., Wolfner M. F., Partridge L. The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc Biol Sci. 2000 Jun 7;267(1448):1097–1105. doi: 10.1098/rspb.2000.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen P. S., Stumm-Zollinger E., Aigaki T., Balmer J., Bienz M., Böhlen P. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988 Jul 29;54(3):291–298. doi: 10.1016/0092-8674(88)90192-4. [DOI] [PubMed] [Google Scholar]
  16. Chosa N., Fukumitsu T., Fujimoto K., Ohnishi E. Activation of prophenoloxidase A1 by an activating enzyme in Drosophila melanogaster. Insect Biochem Mol Biol. 1997 Jan;27(1):61–68. doi: 10.1016/s0965-1748(96)00070-7. [DOI] [PubMed] [Google Scholar]
  17. Cirera S., Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. doi: 10.1093/genetics/147.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Coffman M. A., Goetz F. W. Trout ovulatory proteins are partially responsible for the anti-proteolytic activity found in trout coelomic fluid. Biol Reprod. 1998 Sep;59(3):497–502. doi: 10.1095/biolreprod59.3.497. [DOI] [PubMed] [Google Scholar]
  20. Coleman S., Drähn B., Petersen G., Stolorov J., Kraus K. A Drosophila male accessory gland protein that is a member of the serpin superfamily of proteinase inhibitors is transferred to females during mating. Insect Biochem Mol Biol. 1995 Feb;25(2):203–207. doi: 10.1016/0965-1748(94)00055-m. [DOI] [PubMed] [Google Scholar]
  21. DiBenedetto A. J., Lakich D. M., Kruger W. D., Belote J. M., Baker B. S., Wolfner M. F. Sequences expressed sex-specifically in Drosophila melanogaster adults. Dev Biol. 1987 Jan;119(1):242–251. doi: 10.1016/0012-1606(87)90225-9. [DOI] [PubMed] [Google Scholar]
  22. Edwards K. A., Demsky M., Montague R. A., Weymouth N., Kiehart D. P. GFP-moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev Biol. 1997 Nov 1;191(1):103–117. doi: 10.1006/dbio.1997.8707. [DOI] [PubMed] [Google Scholar]
  23. Fink E., Hehlein-Fink C., Eulitz M. Amino acid sequence elucidation of human acrosin-trypsin inhibitor (HUSI-II) reveals that Kazal-type proteinase inhibitors are structurally related to beta-subunits of glycoprotein hormones. FEBS Lett. 1990 Sep 17;270(1-2):222–224. doi: 10.1016/0014-5793(90)81273-q. [DOI] [PubMed] [Google Scholar]
  24. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Glaser R. L., Wolfner M. F., Lis J. T. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. doi: 10.1002/j.1460-2075.1986.tb04277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Goodman R. B., Peanasky R. J. Isolation of the trypsin inhibitors in Ascaris lumbricoides var. suum using affinity chromatography. Anal Biochem. 1982 Mar 1;120(2):387–393. doi: 10.1016/0003-2697(82)90362-1. [DOI] [PubMed] [Google Scholar]
  27. Grasberger B. L., Clore G. M., Gronenborn A. M. High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site. Structure. 1994 Jul 15;2(7):669–678. doi: 10.1016/s0969-2126(00)00067-8. [DOI] [PubMed] [Google Scholar]
  28. Green C., Levashina E., McKimmie C., Dafforn T., Reichhart J. M., Gubb D. The necrotic gene in Drosophila corresponds to one of a cluster of three serpin transcripts mapping at 43A1.2. Genetics. 2000 Nov;156(3):1117–1127. doi: 10.1093/genetics/156.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hawley J. H., Peanasky R. J. Ascaris suum: are trypsin inhibitors involved in species specificity of Ascarid nematodes? Exp Parasitol. 1992 Aug;75(1):112–118. doi: 10.1016/0014-4894(92)90126-u. [DOI] [PubMed] [Google Scholar]
  30. Hefferon K. L., Oomens A. G., Monsma S. A., Finnerty C. M., Blissard G. W. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology. 1999 Jun 5;258(2):455–468. doi: 10.1006/viro.1999.9758. [DOI] [PubMed] [Google Scholar]
  31. Heifetz Y., Lung O., Frongillo E. A., Jr, Wolfner M. F. The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol. 2000 Jan 27;10(2):99–102. doi: 10.1016/s0960-9822(00)00288-8. [DOI] [PubMed] [Google Scholar]
  32. Heifetz Y., Tram U., Wolfner M. F. Male contributions to egg production: the role of accessory gland products and sperm in Drosophila melanogaster. Proc Biol Sci. 2001 Jan 22;268(1463):175–180. doi: 10.1098/rspb.2000.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Huang K., Strynadka N. C., Bernard V. D., Peanasky R. J., James M. N. The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase. Structure. 1994 Jul 15;2(7):679–689. doi: 10.1016/s0969-2126(00)00068-x. [DOI] [PubMed] [Google Scholar]
  34. Jiang H., Wang Y., Kanost M. R. Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12220–12225. doi: 10.1073/pnas.95.21.12220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kalb J. M., DiBenedetto A. J., Wolfner M. F. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8093–8097. doi: 10.1073/pnas.90.17.8093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998;14(10):846–856. doi: 10.1093/bioinformatics/14.10.846. [DOI] [PubMed] [Google Scholar]
  37. Kise H., Nishioka J., Kawamura J., Suzuki K. Characterization of semenogelin II and its molecular interaction with prostate-specific antigen and protein C inhibitor. Eur J Biochem. 1996 May 15;238(1):88–96. doi: 10.1111/j.1432-1033.1996.0088q.x. [DOI] [PubMed] [Google Scholar]
  38. Lessley B. A., Brown K. I. Purification and properties of a proteinase inhibitor from chicken seminal plasma. Biol Reprod. 1978 Aug;19(1):223–234. doi: 10.1095/biolreprod19.1.223. [DOI] [PubMed] [Google Scholar]
  39. Levashina E. A., Langley E., Green C., Gubb D., Ashburner M., Hoffmann J. A., Reichhart J. M. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science. 1999 Sep 17;285(5435):1917–1919. doi: 10.1126/science.285.5435.1917. [DOI] [PubMed] [Google Scholar]
  40. Lu C. C., Nguyen T., Morris S., Hill D., Sakanari J. A. Anisakis simplex: mutational bursts in the reactive site centers of serine protease inhibitors from an ascarid nematode. Exp Parasitol. 1998 Jun;89(2):257–261. doi: 10.1006/expr.1998.4284. [DOI] [PubMed] [Google Scholar]
  41. Lung O., Wolfner M. F. Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol. 1999 Dec;29(12):1043–1052. doi: 10.1016/s0965-1748(99)00078-8. [DOI] [PubMed] [Google Scholar]
  42. Maroux S., Desnuelle P. On some autolyzed derivatives of bovine trypsin. Biochim Biophys Acta. 1969 May;181(1):59–72. doi: 10.1016/0005-2795(69)90227-x. [DOI] [PubMed] [Google Scholar]
  43. Mignogna G., Pascarella S., Wechselberger C., Hinterleitner C., Mollay C., Amiconi G., Barra D., Kreil G. BSTI, a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes. Protein Sci. 1996 Feb;5(2):357–362. doi: 10.1002/pro.5560050220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Monsma S. A., Wolfner M. F. Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Dev. 1988 Sep;2(9):1063–1073. doi: 10.1101/gad.2.9.1063. [DOI] [PubMed] [Google Scholar]
  45. Murer V., Spetz J. F., Hengst U., Altrogge L. M., de Agostini A., Monard D. Male fertility defects in mice lacking the serine protease inhibitor protease nexin-1. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):3029–3033. doi: 10.1073/pnas.051630698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nakayama S., Kaiser K., Aigaki T. Ectopic expression of sex-peptide in a variety of tissues in Drosophila females using the P[GAL4] enhancer-trap system. Mol Gen Genet. 1997 Apr 28;254(4):449–455. doi: 10.1007/s004380050438. [DOI] [PubMed] [Google Scholar]
  47. Neubaum D. M., Wolfner M. F. Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics. 1999 Oct;153(2):845–857. doi: 10.1093/genetics/153.2.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Park M., Wolfner M. F. Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev Biol. 1995 Oct;171(2):694–702. doi: 10.1006/dbio.1995.1315. [DOI] [PubMed] [Google Scholar]
  49. Peanasky R. J., Bentz Y., Homandberg G. A., Minor S. T., Babin D. R. The isoinhibitors of chymotrypsin/elastase from Ascaris lumbricoides: the reactive site. Arch Biochem Biophys. 1984 Jul;232(1):135–142. doi: 10.1016/0003-9861(84)90529-0. [DOI] [PubMed] [Google Scholar]
  50. Rice W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature. 1996 May 16;381(6579):232–234. doi: 10.1038/381232a0. [DOI] [PubMed] [Google Scholar]
  51. Robert M., Gagnon C. Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999 Jun;55(6-7):944–960. doi: 10.1007/s000180050346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Robinson R., Richardson R., Hinds K., Clayton D., Poirier G. R. Features of a seminal proteinase inhibitor- zona pellucida-binding component on murine spermatozoa. Gamete Res. 1987 Mar;16(3):217–228. doi: 10.1002/mrd.1120160304. [DOI] [PubMed] [Google Scholar]
  53. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  54. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  55. Schiessler H., Fink E., Fritz H. Acid-stable proteinase inhibitors from human seminal plasma. Methods Enzymol. 1976;45:847–859. doi: 10.1016/s0076-6879(76)45078-4. [DOI] [PubMed] [Google Scholar]
  56. Schmidt T., Stumm-Zollinger E., Chen P. S., Böhlen P., Stone S. R. A male accessory gland peptide with protease inhibitory activity in Drosophila funebris. J Biol Chem. 1989 Jun 15;264(17):9745–9749. [PubMed] [Google Scholar]
  57. Simmerl E., Schäfer M., Schäfer U. Structure and regulation of a gene cluster for male accessory gland transcripts in Drosophila melanogaster. Insect Biochem Mol Biol. 1995 Jan;25(1):127–137. doi: 10.1016/0965-1748(94)00034-f. [DOI] [PubMed] [Google Scholar]
  58. Soller M., Bownes M., Kubli E. Control of oocyte maturation in sexually mature Drosophila females. Dev Biol. 1999 Apr 15;208(2):337–351. doi: 10.1006/dbio.1999.9210. [DOI] [PubMed] [Google Scholar]
  59. Swanson W. J., Clark A. G., Waldrip-Dail H. M., Wolfner M. F., Aquadro C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7375–7379. doi: 10.1073/pnas.131568198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tram U., Wolfner M. F. Male seminal fluid proteins are essential for sperm storage in Drosophila melanogaster. Genetics. 1999 Oct;153(2):837–844. doi: 10.1093/genetics/153.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
  62. Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
  63. Tsaur S. C., Ting C. T., Wu C. I. Sex in Drosophila mauritiana: a very high level of amino acid polymorphism in a male reproductive protein gene, Acp26Aa. Mol Biol Evol. 2001 Jan;18(1):22–26. doi: 10.1093/oxfordjournals.molbev.a003716. [DOI] [PubMed] [Google Scholar]
  64. Veselský L., Cechová D. Distribution of acrosin inhibitors in bull reproductive tissues and spermatozoa. Hoppe Seylers Z Physiol Chem. 1980 May;361(5):715–722. doi: 10.1515/bchm2.1980.361.1.715. [DOI] [PubMed] [Google Scholar]
  65. Veselský L., Jonáková V., Cechová D. A Kunitz type of proteinase inhibitor isolated from boar seminal vesicle fluid. Andrologia. 1985 Jul-Aug;17(4):352–358. doi: 10.1111/j.1439-0272.1985.tb01020.x. [DOI] [PubMed] [Google Scholar]
  66. Watt K. W., Lee P. J., M'Timkulu T., Chan W. P., Loor R. Human prostate-specific antigen: structural and functional similarity with serine proteases. Proc Natl Acad Sci U S A. 1986 May;83(10):3166–3170. doi: 10.1073/pnas.83.10.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wolfner M. F., Harada H. A., Bertram M. J., Stelick T. J., Kraus K. W., Kalb J. M., Lung Y. O., Neubaum D. M., Park M., Tram U. New genes for male accessory gland proteins in Drosophila melanogaster. Insect Biochem Mol Biol. 1997 Oct;27(10):825–834. doi: 10.1016/s0965-1748(97)00056-8. [DOI] [PubMed] [Google Scholar]
  68. Xue L., Noll M. Drosophila female sexual behavior induced by sterile males showing copulation complementation. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3272–3275. doi: 10.1073/pnas.060018897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Yeh E., Gustafson K., Boulianne G. L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7036–7040. doi: 10.1073/pnas.92.15.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. von Fellenberg R., Zweifel H. R., Grünig G., Pellegrini A. Proteinase inhibitors of horse seminal plasma. A high molecular mass, acid-soluble proteinase inhibitor. Biol Chem Hoppe Seyler. 1985 Aug;366(8):705–712. doi: 10.1515/bchm3.1985.366.2.705. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES