Skip to main content
Genetics logoLink to Genetics
. 2002 Feb;160(2):417–427. doi: 10.1093/genetics/160.2.417

Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica.

Claudia I Gonzalez-Lopez 1, Roman Szabo 1, Sylvie Blanchin-Roland 1, Claude Gaillardin 1
PMCID: PMC1461987  PMID: 11861549

Abstract

Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.

Full Text

The Full Text of this article is available as a PDF (450.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Bignell E., Tilburn J. Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol Gen Genet. 1994 Dec 15;245(6):787–790. doi: 10.1007/BF00297286. [DOI] [PubMed] [Google Scholar]
  2. Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
  3. Blanchin-Roland S., Cordero Otero R. R., Gaillardin C. Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol. 1994 Jan;14(1):327–338. doi: 10.1128/mcb.14.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourbouloux A., Shahi P., Chakladar A., Delrot S., Bachhawat A. K. Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem. 2000 May 5;275(18):13259–13265. doi: 10.1074/jbc.275.18.13259. [DOI] [PubMed] [Google Scholar]
  5. Casaregola S., Neuvéglise C., Lépingle A., Bon E., Feynerol C., Artiguenave F., Wincker P., Gaillardin C. Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett. 2000 Dec 22;487(1):95–100. doi: 10.1016/s0014-5793(00)02288-2. [DOI] [PubMed] [Google Scholar]
  6. Casarégola S., Feynerol C., Diez M., Fournier P., Gaillardin C. Genomic organization of the yeast Yarrowia lipolytica. Chromosoma. 1997 Nov;106(6):380–390. doi: 10.1007/s004120050259. [DOI] [PubMed] [Google Scholar]
  7. Causton H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T. I., True H. L., Lander E. S., Young R. A. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001 Feb;12(2):323–337. doi: 10.1091/mbc.12.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dang V. D., Benedik M. J., Ekwall K., Choi J., Allshire R. C., Levin H. L. A new member of the Sin3 family of corepressors is essential for cell viability and required for retroelement propagation in fission yeast. Mol Cell Biol. 1999 Mar;19(3):2351–2365. doi: 10.1128/mcb.19.3.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denison S. H., Negrete-Urtasun S., Mingot J. M., Tilburn J., Mayer W. A., Goel A., Espeso E. A., Peñalva M. A., Arst H. N., Jr Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in saccharomyces are homologous. Mol Microbiol. 1998 Oct;30(2):259–264. doi: 10.1046/j.1365-2958.1998.01058.x. [DOI] [PubMed] [Google Scholar]
  10. Denison S. H., Orejas M., Arst H. N., Jr Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem. 1995 Dec 1;270(48):28519–28522. doi: 10.1074/jbc.270.48.28519. [DOI] [PubMed] [Google Scholar]
  11. Denison S. H. pH regulation of gene expression in fungi. Fungal Genet Biol. 2000 Mar;29(2):61–71. doi: 10.1006/fgbi.2000.1188. [DOI] [PubMed] [Google Scholar]
  12. Didion T., Regenberg B., Jørgensen M. U., Kielland-Brandt M. C., Andersen H. A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol. 1998 Feb;27(3):643–650. doi: 10.1046/j.1365-2958.1998.00714.x. [DOI] [PubMed] [Google Scholar]
  13. El Barkani A., Kurzai O., Fonzi W. A., Ramon A., Porta A., Frosch M., Mühlschlegel F. A. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol. 2000 Jul;20(13):4635–4647. doi: 10.1128/mcb.20.13.4635-4647.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Espeso E. A., Arst H. N., Jr On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol. 2000 May;20(10):3355–3363. doi: 10.1128/mcb.20.10.3355-3363.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Espeso E. A., Peñalva M. A. Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem. 1996 Nov 15;271(46):28825–28830. doi: 10.1074/jbc.271.46.28825. [DOI] [PubMed] [Google Scholar]
  16. Espeso E. A., Roncal T., Díez E., Rainbow L., Bignell E., Alvaro J., Suárez T., Denison S. H., Tilburn J., Arst H. N., Jr On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. EMBO J. 2000 Feb 15;19(4):719–728. doi: 10.1093/emboj/19.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Forsberg H., Ljungdahl P. O. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol. 2001 Feb;21(3):814–826. doi: 10.1128/MCB.21.3.814-826.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fournier P., Abbas A., Chasles M., Kudla B., Ogrydziak D. M., Yaver D., Xuan J. W., Peito A., Ribet A. M., Feynerol C. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4912–4916. doi: 10.1073/pnas.90.11.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Futai E., Kubo T., Sorimachi H., Suzuki K., Maeda T. Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta. 2001 Jan 26;1517(2):316–319. doi: 10.1016/s0167-4781(00)00256-6. [DOI] [PubMed] [Google Scholar]
  20. Futai E., Maeda T., Sorimachi H., Kitamoto K., Ishiura S., Suzuki K. The protease activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline adaptation and sporulation. Mol Gen Genet. 1999 Jan;260(6):559–568. doi: 10.1007/s004380050929. [DOI] [PubMed] [Google Scholar]
  21. Gaillardin C. M., Charoy V., Heslot H. A study of copulation, sporulation and meiotic segregation in Candida lipolytica. Arch Mikrobiol. 1973;92(1):69–83. doi: 10.1007/BF00409513. [DOI] [PubMed] [Google Scholar]
  22. Gente S., Billon-Grand G., Poussereau N., Févre M. Ambient alkaline pH prevents maturation but not synthesis of ASPA, the aspartyl protease from Penicillium roqueforti. Curr Genet. 2001 Jan;38(6):323–328. doi: 10.1007/s002940000166. [DOI] [PubMed] [Google Scholar]
  23. Glover D. J., McEwen R. K., Thomas C. R., Young T. W. pH-regulated expression of the acid and alkaline extracellular proteases of Yarrowia lipolytica. Microbiology. 1997 Sep;143(Pt 9):3045–3054. doi: 10.1099/00221287-143-9-3045. [DOI] [PubMed] [Google Scholar]
  24. Goldstein A. L., Snay C. A., Heath C. V., Cole C. N. Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Mol Biol Cell. 1996 Jun;7(6):917–934. doi: 10.1091/mbc.7.6.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hauser M., Narita V., Donhardt A. M., Naider F., Becker J. M. Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol Membr Biol. 2001 Jan-Mar;18(1):105–112. [PubMed] [Google Scholar]
  26. Iraqui I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., André B. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol. 1999 Feb;19(2):989–1001. doi: 10.1128/mcb.19.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Mar 13;98(8):4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jørgensen M. U., Bruun M. B., Didion T., Kielland-Brandt M. C. Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast. Yeast. 1998 Jan 30;14(2):103–114. doi: 10.1002/(SICI)1097-0061(19980130)14:2<103::AID-YEA203>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  29. Lamb T. M., Xu W., Diamond A., Mitchell A. P. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem. 2000 Oct 24;276(3):1850–1856. doi: 10.1074/jbc.M008381200. [DOI] [PubMed] [Google Scholar]
  30. Lambert M., Blanchin-Roland S., Le Louedec F., Lepingle A., Gaillardin C. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol. 1997 Jul;17(7):3966–3976. doi: 10.1128/mcb.17.7.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lambert M., Blanchin-Roland S., Le Louedec F., Lepingle A., Gaillardin C. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol. 1997 Jul;17(7):3966–3976. doi: 10.1128/mcb.17.7.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li W., Mitchell A. P. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics. 1997 Jan;145(1):63–73. doi: 10.1093/genetics/145.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lubkowitz M. A., Barnes D., Breslav M., Burchfield A., Naider F., Becker J. M. Schizosaccharomyces pombe isp4 encodes a transporter representing a novel family of oligopeptide transporters. Mol Microbiol. 1998 May;28(4):729–741. doi: 10.1046/j.1365-2958.1998.00827.x. [DOI] [PubMed] [Google Scholar]
  34. Lubkowitz M. A., Hauser L., Breslav M., Naider F., Becker J. M. An oligopeptide transport gene from Candida albicans. Microbiology. 1997 Feb;143(Pt 2):387–396. doi: 10.1099/00221287-143-2-387. [DOI] [PubMed] [Google Scholar]
  35. Maccheroni W., Jr, May G. S., Martinez-Rossi N. M., Rossi A. The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene. 1997 Jul 31;194(2):163–167. doi: 10.1016/s0378-1119(97)00095-4. [DOI] [PubMed] [Google Scholar]
  36. Madzak C., Blanchin-Roland S., Cordero Otero R. R., Gaillardin C. Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Microbiology. 1999 Jan;145(Pt 1):75–87. doi: 10.1099/13500872-145-1-75. [DOI] [PubMed] [Google Scholar]
  37. Mingot J. M., Espeso E. A., Díez E., Peñalva M. A. Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor. Mol Cell Biol. 2001 Mar;21(5):1688–1699. doi: 10.1128/MCB.21.5.1688-1699.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Murad A. M., Leng P., Straffon M., Wishart J., Macaskill S., MacCallum D., Schnell N., Talibi D., Marechal D., Tekaia F. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001 Sep 3;20(17):4742–4752. doi: 10.1093/emboj/20.17.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Myers L. C., Gustafsson C. M., Bushnell D. A., Lui M., Erdjument-Bromage H., Tempst P., Kornberg R. D. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 1998 Jan 1;12(1):45–54. doi: 10.1101/gad.12.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Negrete-Urtasun S., Denison S. H., Arst H. N., Jr Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J Bacteriol. 1997 Mar;179(5):1832–1835. doi: 10.1128/jb.179.5.1832-1835.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Negrete-Urtasun S., Reiter W., Diez E., Denison S. H., Tilburn J., Espeso E. A., Peñalva M. A., Arst H. N., Jr Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol Microbiol. 1999 Sep;33(5):994–1003. doi: 10.1046/j.1365-2958.1999.01540.x. [DOI] [PubMed] [Google Scholar]
  42. Nickas M. E., Yaffe M. P. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):2585–2593. doi: 10.1128/mcb.16.6.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ogrydziak D. M., Mortimer R. K. Genetics of Extracellular Protease Production in SACCHAROMYCOPSIS LIPOLYTICA. Genetics. 1977 Dec;87(4):621–632. doi: 10.1093/genetics/87.4.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ogrydziak D. M. Yeast extracellular proteases. Crit Rev Biotechnol. 1993;13(1):1–55. doi: 10.3109/07388559309069197. [DOI] [PubMed] [Google Scholar]
  45. Porta A., Ramon A. M., Fonzi W. A. PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol. 1999 Dec;181(24):7516–7523. doi: 10.1128/jb.181.24.7516-7523.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Raymond C. K., Howald-Stevenson I., Vater C. A., Stevens T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992 Dec;3(12):1389–1402. doi: 10.1091/mbc.3.12.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Richard M., Quijano R. R., Bezzate S., Bordon-Pallier F., Gaillardin C. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol. 2001 May;183(10):3098–3107. doi: 10.1128/JB.183.10.3098-3107.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rieder S. E., Banta L. M., Köhrer K., McCaffery J. M., Emr S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996 Jun;7(6):985–999. doi: 10.1091/mbc.7.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ross-Macdonald P., Sheehan A., Roeder G. S., Snyder M. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):190–195. doi: 10.1073/pnas.94.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Saporito-Irwin S. M., Birse C. E., Sypherd P. S., Fonzi W. A. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol. 1995 Feb;15(2):601–613. doi: 10.1128/mcb.15.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sarkar S., Caddick M. X., Bignell E., Tilburn J., Arst H. N., Jr Regulation of gene expression by ambient pH in Aspergillus: genes expressed at acid pH. Biochem Soc Trans. 1996 May;24(2):360–363. doi: 10.1042/bst0240360. [DOI] [PubMed] [Google Scholar]
  52. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N., Jr The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995 Feb 15;14(4):779–790. doi: 10.1002/j.1460-2075.1995.tb07056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tréton B., Blanchin-Roland S., Lambert M., Lépingle A., Gaillardin C. Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and paIH. Mol Gen Genet. 2000 Apr;263(3):505–513. doi: 10.1007/s004380051195. [DOI] [PubMed] [Google Scholar]
  55. Wang H., Clark I., Nicholson P. R., Herskowitz I., Stillman D. J. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol. 1990 Nov;10(11):5927–5936. doi: 10.1128/mcb.10.11.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wang H., Stillman D. J. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol. 1993 Mar;13(3):1805–1814. doi: 10.1128/mcb.13.3.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yaver D. S., Lamsa M., Munds R., Brown S. H., Otani S., Franssen L., Johnstone J. A., Brody H. Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol. 2000 Feb;29(1):28–37. doi: 10.1006/fgbi.1999.1179. [DOI] [PubMed] [Google Scholar]
  58. Young T. W., Wadeson A., Glover D. J., Quincey R. V., Butlin M. J., Kamei E. A. The extracellular acid protease gene of Yarrowia lipolytica: sequence and pH-regulated transcription. Microbiology. 1996 Oct;142(Pt 10):2913–2921. doi: 10.1099/13500872-142-10-2913. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES