Skip to main content
Genetics logoLink to Genetics
. 2002 Mar;160(3):1179–1189. doi: 10.1093/genetics/160.3.1179

The signature of positive selection at randomly chosen loci.

Molly Przeworski 1
PMCID: PMC1462030  PMID: 11901132

Abstract

In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.

Full Text

The Full Text of this article is available as a PDF (242.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andolfatto P. Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev. 2001 Dec;11(6):635–641. doi: 10.1016/s0959-437x(00)00246-x. [DOI] [PubMed] [Google Scholar]
  2. Andolfatto P., Przeworski M. A genome-wide departure from the standard neutral model in natural populations of Drosophila. Genetics. 2000 Sep;156(1):257–268. doi: 10.1093/genetics/156.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andolfatto P., Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics. 2001 Jun;158(2):657–665. doi: 10.1093/genetics/158.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
  5. Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fay J. C., Wu C. I. The neutral theory in the genomic era. Curr Opin Genet Dev. 2001 Dec;11(6):642–646. doi: 10.1016/s0959-437x(00)00247-1. [DOI] [PubMed] [Google Scholar]
  8. Frisse L., Hudson R. R., Bartoszewicz A., Wall J. D., Donfack J., Di Rienzo A. Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am J Hum Genet. 2001 Aug 29;69(4):831–843. doi: 10.1086/323612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu Y. X. Statistical properties of segregating sites. Theor Popul Biol. 1995 Oct;48(2):172–197. doi: 10.1006/tpbi.1995.1025. [DOI] [PubMed] [Google Scholar]
  10. Gilad Y., Segré D., Skorecki K., Nachman M. W., Lancet D., Sharon D. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat Genet. 2000 Oct;26(2):221–224. doi: 10.1038/79957. [DOI] [PubMed] [Google Scholar]
  11. Gilad Yoav, Rosenberg Shai, Przeworski Molly, Lancet Doron, Skorecki Karl. Evidence for positive selection and population structure at the human MAO-A gene. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):862–867. doi: 10.1073/pnas.022614799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hale L. R., Singh R. S. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics. 1991 Sep;129(1):103–117. doi: 10.1093/genetics/129.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamblin Martha T., Thompson Emma E., Di Rienzo Anna. Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet. 2001 Dec 20;70(2):369–383. doi: 10.1086/338628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  15. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeffreys A. J., Kauppi L., Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001 Oct;29(2):217–222. doi: 10.1038/ng1001-217. [DOI] [PubMed] [Google Scholar]
  17. Kim Y., Stephan W. Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics. 2000 Jul;155(3):1415–1427. doi: 10.1093/genetics/155.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim Yuseob, Stephan Wolfgang. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002 Feb;160(2):765–777. doi: 10.1093/genetics/160.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazzaro B. P., Clark A. G. Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. Genetics. 2001 Oct;159(2):659–671. doi: 10.1093/genetics/159.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li W. H., Nei M. Stable linkage disequilibrium without epistasis in subdivided populations. Theor Popul Biol. 1974 Oct;6(2):173–183. doi: 10.1016/0040-5809(74)90022-7. [DOI] [PubMed] [Google Scholar]
  21. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martínez-Arias R., Calafell F., Mateu E., Comas D., Andrés A., Bertranpetit J. Sequence variability of a human pseudogene. Genome Res. 2001 Jun;11(6):1071–1085. doi: 10.1101/gr.167701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McVean G. A., Vieira J. Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics. 2001 Jan;157(1):245–257. doi: 10.1093/genetics/157.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nachman M. W., Crowell S. L. Contrasting evolutionary histories of two introns of the duchenne muscular dystrophy gene, Dmd, in humans. Genetics. 2000 Aug;155(4):1855–1864. doi: 10.1093/genetics/155.4.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nachman M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 2001 Sep;17(9):481–485. doi: 10.1016/s0168-9525(01)02409-x. [DOI] [PubMed] [Google Scholar]
  26. Otto S. P. Detecting the form of selection from DNA sequence data. Trends Genet. 2000 Dec;16(12):526–529. doi: 10.1016/s0168-9525(00)02141-7. [DOI] [PubMed] [Google Scholar]
  27. Parsch J., Meiklejohn C. D., Hartl D. L. Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics. 2001 Oct;159(2):647–657. doi: 10.1093/genetics/159.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pritchard J. K., Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet. 2001 Jun 14;69(1):1–14. doi: 10.1086/321275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  30. Taillon-Miller P., Bauer-Sardiña I., Saccone N. L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J. P., Kwok P. Y. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat Genet. 2000 Jul;25(3):324–328. doi: 10.1038/77100. [DOI] [PubMed] [Google Scholar]
  31. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi A., Tsaur S. C., Coyne J. A., Wu C. I. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2001 Mar 20;98(7):3920–3925. doi: 10.1073/pnas.061465098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wall J. D., Hudson R. R. Coalescent simulations and statistical tests of neutrality. Mol Biol Evol. 2001 Jun;18(6):1134–1138. doi: 10.1093/oxfordjournals.molbev.a003884. [DOI] [PubMed] [Google Scholar]
  36. Wall J. D. Insights from linked single nucleotide polymorphisms: what we can learn from linkage disequilibrium. Curr Opin Genet Dev. 2001 Dec;11(6):647–651. doi: 10.1016/s0959-437x(00)00248-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES