Abstract
While >50 genes have been found to influence the development of teeth in mice, we still know very little about the genetic basis for the adaptive characteristics of teeth, such as size and shape. We applied interval mapping procedures to Procrustes size and shape data obtained from 10 morphological landmarks on the mandibular molar row of the F(2) progeny from a cross between the LG/J and SM/J strains of mice. This revealed many more QTL for molar shape (18) than for molar centroid size (3), although levels of dominance effects were comparable among QTL for size and shape. Comparisons of patterns of Procrustes additive and dominance shape effects and ordination of QTL effects by principal components analysis suggested that the effects of the shape QTL were dispersed among the three molars and thus that none of these molars represents a genetically distinct developmental structure. The results of an analysis of co-occurrence of QTL for molar shape, mandible shape, and cranial dimensions in these mice suggested that many of the QTL for molar shape may be the same as those affecting these other sets of characters, although in some cases this could be due to effects of closely linked genes.
Full Text
The Full Text of this article is available as a PDF (270.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bei M., Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development. 1998 Nov;125(21):4325–4333. doi: 10.1242/dev.125.21.4325. [DOI] [PubMed] [Google Scholar]
- Bleicher F., Couble M. L., Farges J. C., Couble P., Magloire H. Sequential expression of matrix protein genes in developing rat teeth. Matrix Biol. 1999 Apr;18(2):133–143. doi: 10.1016/s0945-053x(99)00007-4. [DOI] [PubMed] [Google Scholar]
- COHN S. A. Development of the molar teeth in the albino mouse. Am J Anat. 1957 Sep;101(2):295–319. doi: 10.1002/aja.1001010205. [DOI] [PubMed] [Google Scholar]
- Chai C K. Analysis of Quantitative Inheritance of Body Size in Mice. II. Gene Action and Segregation. Genetics. 1956 Mar;41(2):165–178. doi: 10.1093/genetics/41.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai C. K. Analysis of Quantitative Inheritance of Body Size in Mice. I. Hybridization and Maternal Influence. Genetics. 1956 Mar;41(2):157–164. doi: 10.1093/genetics/41.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai Y., Mah A., Crohin C., Groff S., Bringas P., Jr, Le T., Santos V., Slavkin H. C. Specific transforming growth factor-beta subtypes regulate embryonic mouse Meckel's cartilage and tooth development. Dev Biol. 1994 Mar;162(1):85–103. doi: 10.1006/dbio.1994.1069. [DOI] [PubMed] [Google Scholar]
- Cheverud J. M., Routman E. J., Duarte F. A., van Swinderen B., Cothran K., Perel C. Quantitative trait loci for murine growth. Genetics. 1996 Apr;142(4):1305–1319. doi: 10.1093/genetics/142.4.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho M. I., Garant P. R. Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec. 1996 Jun;245(2):342–360. doi: 10.1002/(SICI)1097-0185(199606)245:2<342::AID-AR16>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Souza R. N., Aberg T., Gaikwad J., Cavender A., Owen M., Karsenty G., Thesleff I. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 1999 Jul;126(13):2911–2920. doi: 10.1242/dev.126.13.2911. [DOI] [PubMed] [Google Scholar]
- Fantl V., Stamp G., Andrews A., Rosewell I., Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995 Oct 1;9(19):2364–2372. doi: 10.1101/gad.9.19.2364. [DOI] [PubMed] [Google Scholar]
- Ferguson C. A., Tucker A. S., Christensen L., Lau A. L., Matzuk M. M., Sharpe P. T. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998 Aug 15;12(16):2636–2649. doi: 10.1101/gad.12.16.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodale H. D. PROGRESS REPORT ON POSSIBILITIES IN PROGENY-TEST BREEDING. Science. 1941 Nov 7;94(2445):442–443. doi: 10.1126/science.94.2445.442. [DOI] [PubMed] [Google Scholar]
- Grüneberg H. Genes and genotypes affecting the teeth of the mouse. J Embryol Exp Morphol. 1965 Oct;14(2):137–159. [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jernvall J., Aberg T., Kettunen P., Keränen S., Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998 Jan;125(2):161–169. doi: 10.1242/dev.125.2.161. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Spiegelman B. M., Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell. 1992 Nov 13;71(4):577–586. doi: 10.1016/0092-8674(92)90592-z. [DOI] [PubMed] [Google Scholar]
- Kettunen P., Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn. 1998 Mar;211(3):256–268. doi: 10.1002/(SICI)1097-0177(199803)211:3<256::AID-AJA7>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Klingenberg C. P., Leamy L. J., Routman E. J., Cheverud J. M. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics. 2001 Feb;157(2):785–802. doi: 10.1093/genetics/157.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott S. A., Haley C. S. Multitrait least squares for quantitative trait loci detection. Genetics. 2000 Oct;156(2):899–911. doi: 10.1093/genetics/156.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Laurie C. C., True J. R., Liu J., Mercer J. M. An introgression analysis of quantitative trait loci that contribute to a morphological difference between Drosophila simulans and D. mauritiana. Genetics. 1997 Feb;145(2):339–348. doi: 10.1093/genetics/145.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leamy L. J., Touchberry R. W. Additive and non-additive genetic variance in odontometric traits in crosses of seven inbred lines of house mice. Genet Res. 1974 Apr;23(2):207–217. doi: 10.1017/s001667230001483x. [DOI] [PubMed] [Google Scholar]
- Li S. W., Khillan J., Prockop D. J. The complete cDNA coding sequence for the mouse pro alpha 1(I) chain of type I procollagen. Matrix Biol. 1995 Jul;14(7):593–595. doi: 10.1016/s0945-053x(05)80009-5. [DOI] [PubMed] [Google Scholar]
- Liu J., Mercer J. M., Stam L. F., Gibson G. C., Zeng Z. B., Laurie C. C. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics. 1996 Apr;142(4):1129–1145. doi: 10.1093/genetics/142.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marks S. C., Jr, Schroeder H. E. Tooth eruption: theories and facts. Anat Rec. 1996 Jun;245(2):374–393. doi: 10.1002/(SICI)1097-0185(199606)245:2<374::AID-AR18>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Routman E. J., Cheverud J. M. Polymorphism for PCR-analyzed microsatellites between the inbred mouse strains LG and SM. Mamm Genome. 1995 Jun;6(6):401–404. doi: 10.1007/BF00355640. [DOI] [PubMed] [Google Scholar]
- Schwartz G. T. Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. Am J Phys Anthropol. 2000 Feb;111(2):221–244. doi: 10.1002/(SICI)1096-8644(200002)111:2<221::AID-AJPA8>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Sofaer J. A. Tooth development in the 'crooked' mouse. J Embryol Exp Morphol. 1977 Oct;41:279–287. [PubMed] [Google Scholar]
- Suwa G., White T. D., Howell F. C. Mandibular postcanine dentition from the Shungura Formation, Ethiopia: crown morphology, taxonomic allocations, and Plio-Pleistocene hominid evolution. Am J Phys Anthropol. 1996 Oct;101(2):247–282. doi: 10.1002/(SICI)1096-8644(199610)101:2<247::AID-AJPA9>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Jernvall J. The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb Symp Quant Biol. 1997;62:257–267. [PubMed] [Google Scholar]
- Thomas B. L., Tucker A. S., Qui M., Ferguson C. A., Hardcastle Z., Rubenstein J. L., Sharpe P. T. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997 Dec;124(23):4811–4818. doi: 10.1242/dev.124.23.4811. [DOI] [PubMed] [Google Scholar]
- Vaahtokari A., Aberg T., Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development. 1996 Jan;122(1):121–129. doi: 10.1242/dev.122.1.121. [DOI] [PubMed] [Google Scholar]
- Yamazaki H., Kunisada T., Miyamoto A., Tagaya H., Hayashi S. Tooth-specific expression conferred by the regulatory sequences of rat dentin sialoprotein gene in transgenic mice. Biochem Biophys Res Commun. 1999 Jul 5;260(2):433–440. doi: 10.1006/bbrc.1999.0875. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman E., Palsson A., Gibson G. Quantitative trait loci affecting components of wing shape in Drosophila melanogaster. Genetics. 2000 Jun;155(2):671–683. doi: 10.1093/genetics/155.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]