Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1749–1753. doi: 10.1093/genetics/160.4.1749

Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression.

Angela D Giusani 1, Marcelo Vinces 1, Carol A Kumamoto 1
PMCID: PMC1462044  PMID: 11973327

Abstract

Filamentation of Candida albicans occurs in response to many environmental cues. During growth within matrix, Efg1p represses filamentation and Czf1p relieves this repression. We propose that Czf1p interacts with Efg1p, altering its function. The complex regulation of filamentation may reflect the versatility of C. albicans as a pathogen.

Full Text

The Full Text of this article is available as a PDF (98.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun B. R., Head W. S., Wang M. X., Johnson A. D. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics. 2000 Sep;156(1):31–44. doi: 10.1093/genetics/156.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun B. R., Johnson A. D. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics. 2000 May;155(1):57–67. doi: 10.1093/genetics/155.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. H., Jr, Giusani A. D., Chen X., Kumamoto C. A. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol. 1999 Nov;34(4):651–662. doi: 10.1046/j.1365-2958.1999.01619.x. [DOI] [PubMed] [Google Scholar]
  4. Csank C., Schröppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D. Y., Whiteway M. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun. 1998 Jun;66(6):2713–2721. doi: 10.1128/iai.66.6.2713-2721.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Facchini L. M., Chen S., Marhin W. W., Lear J. N., Penn L. Z. The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol Cell Biol. 1997 Jan;17(1):100–114. doi: 10.1128/mcb.17.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Facchini L. M., Penn L. Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 1998 Jun;12(9):633–651. [PubMed] [Google Scholar]
  7. Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gow N. A. Germ tube growth of Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43–55. [PubMed] [Google Scholar]
  9. James P., Halladay J., Craig E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. doi: 10.1093/genetics/144.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Köhler J. R., Fink G. R. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13223–13228. doi: 10.1073/pnas.93.23.13223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leberer E., Harcus D., Broadbent I. D., Clark K. L., Dignard D., Ziegelbauer K., Schmidt A., Gow N. A., Brown A. J., Thomas D. Y. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217–13222. doi: 10.1073/pnas.93.23.13217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leberer E., Ziegelbauer K., Schmidt A., Harcus D., Dignard D., Ash J., Johnson L., Thomas D. Y. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol. 1997 Aug 1;7(8):539–546. doi: 10.1016/s0960-9822(06)00252-1. [DOI] [PubMed] [Google Scholar]
  13. Leng P., Lee P. R., Wu H., Brown A. J. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol. 2001 Jul;183(13):4090–4093. doi: 10.1128/JB.183.13.4090-4093.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu H., Köhler J., Fink G. R. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994 Dec 9;266(5191):1723–1726. doi: 10.1126/science.7992058. [DOI] [PubMed] [Google Scholar]
  15. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997 Sep 5;90(5):939–949. doi: 10.1016/s0092-8674(00)80358-x. [DOI] [PubMed] [Google Scholar]
  16. Mink S., Mutschler B., Weiskirchen R., Bister K., Klempnauer K. H. A novel function for Myc: inhibition of C/EBP-dependent gene activation. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6635–6640. doi: 10.1073/pnas.93.13.6635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peukert K., Staller P., Schneider A., Carmichael G., Hänel F., Eilers M. An alternative pathway for gene regulation by Myc. EMBO J. 1997 Sep 15;16(18):5672–5686. doi: 10.1093/emboj/16.18.5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riggle P. J., Andrutis K. A., Chen X., Tzipori S. R., Kumamoto C. A. Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun. 1999 Jul;67(7):3649–3652. doi: 10.1128/iai.67.7.3649-3652.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ryley J. F., Ryley N. G. Candida albicans--do mycelia matter? J Med Vet Mycol. 1990;28(3):225–239. [PubMed] [Google Scholar]
  20. Schröppel K., Sprösser K., Whiteway M., Thomas D. Y., Röllinghoff M., Csank C. Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase Cpp1p of Candida albicans is independent of the MAP kinase Cek1p. Infect Immun. 2000 Dec;68(12):7159–7161. doi: 10.1128/iai.68.12.7159-7161.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sharkey L. L., McNemar M. D., Saporito-Irwin S. M., Sypherd P. S., Fonzi W. A. HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol. 1999 Sep;181(17):5273–5279. doi: 10.1128/jb.181.17.5273-5279.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sobel J. D., Muller G., Buckley H. R. Critical role of germ tube formation in the pathogenesis of candidal vaginitis. Infect Immun. 1984 Jun;44(3):576–580. doi: 10.1128/iai.44.3.576-580.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES