Abstract
Saccharomyces cerevisiae Spo14, a phosphatidylcholine-specific, phosphatidylinositol (4,5) bisphosphate-activated phospholipase D (PLD), is essential for meiosis and spore formation. Spo14 is also required for secretion in the absence of the phosphatidylinositol/phosphatidylcholine transfer protein Sec14 (i.e., Sec14-independent secretion). In sporulating cells Spo14 is phosphorylated and relocalized within the cell. In contrast, Spo14 does not relocalize and is not phosphorylated in Sec14-independent secretion. Analysis of a partially phosphatidylinositol (4,5) bisphosphate-activated Spo14 mutant, spo14(R894G), revealed that Spo14 function in Sec14-independent secretion, unlike the situation in meiosis, requires fully stimulated PLD activity. Consistent with the differential regulation of Spo14 function during sporulation and secretion, we isolated a mutant allele, spo14-S251P, the product of which is improperly phosphorylated and fails to relocalize and rescue the sporulation phenotype of homozygous spo14 diploids, but supports Sec14-independent secretion. Furthermore, we show that the N-terminal domain of Spo14 is both phosphorylated and sufficient for prospore membrane localization during sporulation. These data indicate that Spo14 phosphorylation and relocalization are essential for the process of sporulation, but dispensable for Sec14-independent secretion. Finally, we demonstrate that Spo14 phosphorylation and relocalization are initiated by nitrogen and glucose limitation and occur independently of the process of meiosis.
Full Text
The Full Text of this article is available as a PDF (215.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bankaitis V. A., Aitken J. R., Cleves A. E., Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature. 1990 Oct 11;347(6293):561–562. doi: 10.1038/347561a0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Byers B., Goetsch L. Reversible pachytene arrest of Saccharomyces cerevisiae at elevated temperature. Mol Gen Genet. 1982;187(1):47–53. doi: 10.1007/BF00384382. [DOI] [PubMed] [Google Scholar]
- Cleves A. E., McGee T. P., Whitters E. A., Champion K. M., Aitken J. R., Dowhan W., Goebl M., Bankaitis V. A. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991 Feb 22;64(4):789–800. doi: 10.1016/0092-8674(91)90508-v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleves A. E., Novick P. J., Bankaitis V. A. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol. 1989 Dec;109(6 Pt 1):2939–2950. doi: 10.1083/jcb.109.6.2939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ella K. M., Dolan J. W., Qi C., Meier K. E. Characterization of Saccharomyces cerevisiae deficient in expression of phospholipase D. Biochem J. 1996 Feb 15;314(Pt 1):15–19. doi: 10.1042/bj3140015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang M., Kearns B. G., Gedvilaite A., Kagiwada S., Kearns M., Fung M. K., Bankaitis V. A. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 1996 Dec 2;15(23):6447–6459. [PMC free article] [PubMed] [Google Scholar]
- Hollingsworth N. M., Ponte L., Halsey C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 1995 Jul 15;9(14):1728–1739. doi: 10.1101/gad.9.14.1728. [DOI] [PubMed] [Google Scholar]
- Kanoh H., Nakashima S., Zhao Y., Sugiyama Y., Kitajima Y., Nozawa Y. Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, Candida albicans. Biochim Biophys Acta. 1998 Jul 9;1398(3):359–364. doi: 10.1016/s0167-4781(98)00067-0. [DOI] [PubMed] [Google Scholar]
- Keranen L. M., Dutil E. M., Newton A. C. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol. 1995 Dec 1;5(12):1394–1403. doi: 10.1016/s0960-9822(95)00277-6. [DOI] [PubMed] [Google Scholar]
- Li X., Routt S. M., Xie Z., Cui X., Fang M., Kearns M. A., Bard M., Kirsch D. R., Bankaitis V. A. Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell. 2000 Jun;11(6):1989–2005. doi: 10.1091/mbc.11.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris A. J., Engebrecht J., Frohman M. A. Structure and regulation of phospholipase D. Trends Pharmacol Sci. 1996 May;17(5):182–185. doi: 10.1016/0165-6147(96)10016-x. [DOI] [PubMed] [Google Scholar]
- Muhlrad D., Hunter R., Parker R. A rapid method for localized mutagenesis of yeast genes. Yeast. 1992 Feb;8(2):79–82. doi: 10.1002/yea.320080202. [DOI] [PubMed] [Google Scholar]
- Rivas M. P., Kearns B. G., Xie Z., Guo S., Sekar M. C., Hosaka K., Kagiwada S., York J. D., Bankaitis V. A. Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to "bypass Sec14p" and inositol auxotrophy. Mol Biol Cell. 1999 Jul;10(7):2235–2250. doi: 10.1091/mbc.10.7.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudge S. A., Cavenagh M. M., Kamath R., Sciorra V. A., Morris A. J., Kahn R. A., Engebrecht J. ADP-Ribosylation factors do not activate yeast phospholipase Ds but are required for sporulation. Mol Biol Cell. 1998 Aug;9(8):2025–2036. doi: 10.1091/mbc.9.8.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudge S. A., Engebrecht J. Regulation and function of PLDs in yeast. Biochim Biophys Acta. 1999 Jul 30;1439(2):167–174. doi: 10.1016/s1388-1981(99)00092-x. [DOI] [PubMed] [Google Scholar]
- Rudge S. A., Morris A. J., Engebrecht J. Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol. 1998 Jan 12;140(1):81–90. doi: 10.1083/jcb.140.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudge S. A., Pettitt T. R., Zhou C., Wakelam M. J., Engebrecht J. A. SPO14 separation-of-function mutations define unique roles for phospholipase D in secretion and cellular differentiation in Saccharomyces cerevisiae. Genetics. 2001 Aug;158(4):1431–1444. doi: 10.1093/genetics/158.4.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sciorra V. A., Rudge S. A., Prestwich G. D., Frohman M. A., Engebrecht J., Morris A. J. Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J. 1999 Nov 1;18(21):5911–5921. doi: 10.1093/emboj/18.21.5911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreenivas A., Patton-Vogt J. L., Bruno V., Griac P., Henry S. A. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem. 1998 Jul 3;273(27):16635–16638. doi: 10.1074/jbc.273.27.16635. [DOI] [PubMed] [Google Scholar]
- Steed P. M., Clark K. L., Boyar W. C., Lasala D. J. Characterization of human PLD2 and the analysis of PLD isoform splice variants. FASEB J. 1998 Oct;12(13):1309–1317. doi: 10.1096/fasebj.12.13.1309. [DOI] [PubMed] [Google Scholar]
- Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. doi: 10.1083/jcb.119.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waksman M., Eli Y., Liscovitch M., Gerst J. E. Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem. 1996 Feb 2;271(5):2361–2364. doi: 10.1074/jbc.271.5.2361. [DOI] [PubMed] [Google Scholar]
- Xie Z., Fang M., Rivas M. P., Faulkner A. J., Sternweis P. C., Engebrecht J. A., Bankaitis V. A. Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12346–12351. doi: 10.1073/pnas.95.21.12346. [DOI] [PMC free article] [PubMed] [Google Scholar]