Skip to main content
Genetics logoLink to Genetics
. 2002 Apr;160(4):1469–1479. doi: 10.1093/genetics/160.4.1469

Polymorphism and selection at the SerH immobilization antigen locus in natural populations of Tetrahymena thermophila.

Carri A Gerber 1, Alex B Lopez 1, Steven J Shook 1, F Paul Doerder 1
PMCID: PMC1462060  PMID: 11973302

Abstract

The SerH locus of Tetrahymena thermophila is one of several paralogous loci with genes encoding variants of the major cell surface protein known as the immobilization antigen (i-ag). The locus is highly polymorphic, raising questions concerning functional equivalency and selective forces acting on its multiple alleles. Here, we compare the sequences and expression of SerH1, SerH3, SerH4, SerH5, and SerH6. The precursor i-ags are highly similar. They are rich in alanine, serine, threonine, and cysteine and they share nearly identical ER translocation and GPI addition signals. The locations of the 39 cysteines are highly conserved, particularly in the 3.5 central, imperfect tandem repeats in which 8 periodic cysteines punctuate alternating short and long stretches of amino acids. Hydrophobicity patterns are also conserved. Nevertheless, amino acid sequence identity is low, ranging from 60.7 to 82.9%. At the nucleotide level, from 9.7 to 26.7% of nucleotide sites are polymorphic in pairwise comparisons. Expression of each allele is regulated by temperature-sensitive mRNA stability. H mRNAs are stable at <36 degrees but are unstable at >36 degrees. The H5 mRNA, which is less affected by temperature, has a different arrangement of the putative mRNA destabilization motif AUUUA. Statistical analysis of SerH genes indicates that the multiple alleles are neutral. Significantly low ratios of the rates of nonsynonymous to synonymous amino acid substitutions suggest that the multiple alleles are subject to purifying (negative) selection enforcing constraints on structure.

Full Text

The Full Text of this article is available as a PDF (253.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asson-Batres M. A., Spurgeon S. L., Diaz J., DeLoughery T. G., Bagby G. C., Jr Evolutionary conservation of the AU-rich 3' untranslated region of messenger RNA. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1318–1322. doi: 10.1073/pnas.91.4.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balmer L. A., Beveridge D. J., Jazayeri J. A., Thomson A. M., Walker C. E., Leedman P. J. Identification of a novel AU-Rich element in the 3' untranslated region of epidermal growth factor receptor mRNA that is the target for regulated RNA-binding proteins. Mol Cell Biol. 2001 Mar;21(6):2070–2084. doi: 10.1128/MCB.21.6.2070-2084.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  4. Deak J. C., Doerder F. P. Sequence, codon usage and cysteine periodicity of the SerH1 gene and in the encoded surface protein of Tetrahymena thermophila. Gene. 1995 Oct 16;164(1):163–166. doi: 10.1016/0378-1119(95)00446-d. [DOI] [PubMed] [Google Scholar]
  5. Doerder F. P., Berkowitz M. S. Purification and partial characterization of the H immobilization antigens of Tetrahymena thermophila. J Protozool. 1986 May;33(2):204–208. doi: 10.1111/j.1550-7408.1986.tb05590.x. [DOI] [PubMed] [Google Scholar]
  6. Doerder F. P., Gerber C. A. Molecular characterization of the SerL paralogs of Tetrahymena thermophila. Biochem Biophys Res Commun. 2000 Nov 30;278(3):621–626. doi: 10.1006/bbrc.2000.3857. [DOI] [PubMed] [Google Scholar]
  7. Doerder F. P. Sequence and expression of the SerJ immobilization antigen gene of Tetrahymena thermophila regulated by dominant epistasis. Gene. 2000 Oct 31;257(2):319–326. doi: 10.1016/s0378-1119(00)00380-2. [DOI] [PubMed] [Google Scholar]
  8. Eisenhaber B., Bork P., Eisenhaber F. Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol. 1999 Sep 24;292(3):741–758. doi: 10.1006/jmbi.1999.3069. [DOI] [PubMed] [Google Scholar]
  9. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  11. Kile J. P., Love H. D., Jr, Hubach C. A., Bannon G. A. Reproducible and variable rearrangements of a Tetrahymena thermophila surface protein gene family occur during macronuclear development. Mol Cell Biol. 1988 Nov;8(11):5043–5046. doi: 10.1128/mcb.8.11.5043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ko Y. G., Thompson G. A., Jr Immobilization antigens from Tetrahymena thermophila are glycosyl-phosphatidylinositol-linked proteins. J Protozool. 1992 Nov-Dec;39(6):719–723. doi: 10.1111/j.1550-7408.1992.tb04454.x. [DOI] [PubMed] [Google Scholar]
  13. Lagnado C. A., Brown C. Y., Goodall G. J. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol. 1994 Dec;14(12):7984–7995. doi: 10.1128/mcb.14.12.7984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Larsen L. K., Andreasen P. H., Dreisig H., Palm L., Nielsen H., Engberg J., Kristiansen K. Cloning and characterization of the gene encoding the highly expressed ribosomal protein l3 of the ciliated protozoan Tetrahymena thermophila. Evidence for differential codon usage in highly expressed genes. Cell Biol Int. 1999;23(8):551–560. doi: 10.1006/cbir.1999.0419. [DOI] [PubMed] [Google Scholar]
  15. Liu X., Gorovsky M. A. Mapping the 5' and 3' ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res. 1993 Oct 25;21(21):4954–4960. doi: 10.1093/nar/21.21.4954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Love H. D., Jr, Allen-Nash A., Zhao Q. A., Bannon G. A. mRNA stability plays a major role in regulating the temperature-specific expression of a Tetrahymena thermophila surface protein. Mol Cell Biol. 1988 Jan;8(1):427–432. doi: 10.1128/mcb.8.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McMillan P. J., Tondravi M. M., Bannon G. A. rseB, a chromosomal locus that affects the stability of a temperature-specific surface protein mRNA in Tetrahymena thermophila. Nucleic Acids Res. 1993 Sep 11;21(18):4356–4362. doi: 10.1093/nar/21.18.4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nanney D L, Dubert J M. The Genetics of the H Serotype System in Variety 1 of Tetrahymena Pyriformis. Genetics. 1960 Oct;45(10):1335–1349. doi: 10.1093/genetics/45.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nielsen R. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 2001 Jun;86(Pt 6):641–647. doi: 10.1046/j.1365-2540.2001.00895.x. [DOI] [PubMed] [Google Scholar]
  20. PREER J. R., Jr Studies on the immobilization antigens of Paramecium. III. Properties. J Immunol. 1959 Oct;83:385–391. [PubMed] [Google Scholar]
  21. Polley S. D., Conway D. J. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001 Aug;158(4):1505–1512. doi: 10.1093/genetics/158.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prat A. Conserved sequences flank variable tandem repeats in two alleles of the G surface protein of Paramecium primaurelia. J Mol Biol. 1990 Feb 5;211(3):521–535. doi: 10.1016/0022-2836(90)90263-L. [DOI] [PubMed] [Google Scholar]
  23. Ron A., Williams N. E., Doerder F. P. The immobilization antigens of Tetrahymena thermophila are glycoproteins. J Protozool. 1992 Jul-Aug;39(4):508–510. doi: 10.1111/j.1550-7408.1992.tb04840.x. [DOI] [PubMed] [Google Scholar]
  24. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  25. Smith D. L., Berkowitz M. S., Potoczak D., Krause M., Raab C., Quinn F., Doerder F. P. Characterization of the T, L, I, S, M and P cell surface (immobilization) antigens of Tetrahymena thermophila: molecular weights, isoforms, and cross-reactivity of antisera. J Protozool. 1992 May-Jun;39(3):420–428. doi: 10.1111/j.1550-7408.1992.tb01475.x. [DOI] [PubMed] [Google Scholar]
  26. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tondravi M. M., Willis R. L., Love H. D., Jr, Bannon G. A. Molecular characterization of SerH3, a Tetrahymena thermophila gene encoding a temperature-regulated surface antigen. Mol Cell Biol. 1990 Nov;10(11):6091–6096. doi: 10.1128/mcb.10.11.6091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams N. E., Doerder F. P., Ron A. Expression of a cell surface immobilization antigen during serotype transformation in Tetrahymena thermophila. Mol Cell Biol. 1985 Aug;5(8):1925–1932. doi: 10.1128/mcb.5.8.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilusz C. J., Wormington M., Peltz S. W. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001 Apr;2(4):237–246. doi: 10.1038/35067025. [DOI] [PubMed] [Google Scholar]
  30. Xia X., Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 2001 Jul-Aug;92(4):371–373. doi: 10.1093/jhered/92.4.371. [DOI] [PubMed] [Google Scholar]
  31. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
  32. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000 Dec 1;15(12):496–503. doi: 10.1016/S0169-5347(00)01994-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES